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Front Matter Preface

Introduction
ree

Disclaimer: I make absolutely no guarantee that this document is complete nor without error. In
particular, any content covered exclusively in lectures (if any) will not be recorded here. This document
was written during the 2023 academic year, so any changes in the course since then may not be accurately
reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be
introduced in italics. Important points will be bold. Common mistakes will be underlined. The latter
two classifications are under my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this
is not examinable, but has been included as it may be helpful to know alternative methods to solve
problems.

The table of contents above, and any inline references are all hyperlinked for your convenience.

History
First Edition: 2025-05-04∗

Current Edition: 2025-05-07

Authors
This document was written by R.J. Kit L., a maths student. I am not otherwise affiliated with the
university, and cannot help you with related matters.

Please send me a PM on Discord @Desync#6290, a message in the WMX server, or an email to War-
wick.Mathematics.Exchange@gmail.com for any corrections. (If this document somehow manages to
persist for more than a few years, these contact details might be out of date, depending on the main-
tainers. Please check the most recently updated version you can find.)

If you found this guide helpful and want to support me, you can buy me a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates
chronologically, which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details.
This footnote was made by the computer science gang.
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MA3K6 Introduction

1 Introduction

Let B := {0,1}, and let n be a positive integer. The points of the set Bn are called binary vectors or
Boolean points. To simplify notation, we will write the elements of Bn without commas or parentheses,
e.g.

B2 = {00,01,10,11}

A Boolean function of n variables is a function f : Bn → B. A point X = (x1, . . . ,nn) ∈ Bn is a true
point of f if f(X) = 1, and is a false point if f(X) = 0. The set of true points of f is denoted by T (f),
and the set of false points by F (f).

The most elementary way to define a Boolean function is via its truth table, i.e. a list of all of the points
of Bn, along with the value of the function at each point.

Example. A Boolean function f of three variables, x, y, and z, defined by its truth table:

x,y,z f(x,y,z)
000 1
001 1
010 1
011 1
100 0
101 0
110 0
111 1

This function has five true points

T (f) = {000,001,010,011,111}

and three false points
F (f) = {100,101,110}

△

In a truth table, the Boolean points are normally listed in lexicographic order, in which case, we only
need the output values, which can be represented as a vector of values. For instance, the function above
as vector of values 11110001.

Theorem 1.1. The number of Boolean functions of n variables is 22
n

.

Proof. There are 2n Boolean points, and for each one, a Boolean function can take one of two possible
values. ■

1.1 Boolean Functions of One or Two Variables
There are four Boolean functions of one variable.

x g1(x) ≡ 01 g2(x) ≡ 11 g3(x) ≡ x g4(x) ≡ x
0 0 1 0 1
1 0 1 1 0

• 0n is the constant zero function of n variables that takes the value 0 on all points of Bn;

• 1n is the constant one function of n variables that takes the value 1 on all points of Bn;

• x is the negation, complementation, or Boolean NOT of x.

There are sixteen Boolean functions of two variables:

Algebraic Geometry | 1



MA3K6 1.2 An Aside on Set Systems, Hypergraphs, and Graphs

x,y f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16
00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Many of these have special names and notations:

• f2(x,y) = x ∧ y = x&y = xy is conjunction or Boolean AND ;

• f8(x,y) = x ∨ y = x&y = x+ y is disjunction or Boolean OR;

• f7(x,y) = x⊕ y is addition modulo 2 or Boolean XOR;

• f9(x,y) = x ↓ y is the Peirce arrow or Boolean NOR;

• f10(x,y) = x ∼ y is equivalence;

• f14(x,y) = x→ y is implication;

• f15(x,y) = x ↑ y is the Sheffer stroke or Boolean NAND ;

1.2 An Aside on Set Systems, Hypergraphs, and Graphs
A set system is a pair (V,E) consisting of a finite set V called the ground set or universe, and a collection
of subsets E ⊆ P(V ).

If V = {v1, . . . ,vn}, then any subset A ⊆ V can be described by its characteristic vector eA. That is, a
binary vector (a1, . . . ,an) ∈ Bn such that ai = 1 if and only if vi ∈ A.

Every set system over a totally ordered universe of n elements uniquely corresponds to a Boolean function
f of n variables by mapping a Boolean point to true under f if and only if it is the characteristic vector of
an subset in E . This correspondence also establishes a relationship between set operations and Boolean
functions. For instance, the union of two sets corresponds to disjunction in that C = A∪B if and only if
eC = eA∨eB , where the disjunction is taken pointwise over the vector. Similarly, intersection correspond
to conjunction, symmetric difference to addition modulo 2, relative difference to the function f3 in the
Table 1, and complementation to negation.

Set systems can also be interpreted as hypergraphs, with the ground set V containing vertices and E
containing hyperedges. In particular, a hypergraph in which every hyperedge consists of two vertices is a
graph, in which case the hyperedges are called edges. A directed graph is a graph in which every edge is
an ordered pair of vertices, in which case the edges are called arcs.

1.3 Basic Identities
Theorem 1.2. For all x,y,z ∈ B,

(i) x ∨ 1 = 1 and x ∧ 0 = 0;

(ii) x ∨ 0 = x and x ∧ 1 = x;

(iii) x ∨ y = y ∨ x and x ∧ y = y ∧ x (commutativity);

(iv) (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z) (associativity);

(v) x ∨ x = x and x ∧ x = x (idempotency);

(vi) x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x (absorption);

(vii) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and x(y ∨ z) = (x ∧ y) ∨ (x ∧ z) (distribution);

(viii) x ∨ xof1 and x ∧ x = 0;

Algebraic Geometry | 2



MA3K6 1.4 Boolean Expressions

(ix) x = x (involution);

(x) x ∨ y = x ∧ y and x ∧ y = x ∨ x (De Morgan’s laws)

(xi) x ∨ (x ∧ y) = x ∨ y and x ∧ (x ∨ y) = xy (Boolean absorption);

Proof. All easily verified through truth tables. ■

1.4 Boolean Expressions
Given a finite collection of Boolean variables x1, . . . ,xn, a Boolean expression or Boolean formula in the
variables x1, . . . ,xn is defined inductively as follows:

• The constants 0 and 1, and the variables x1, . . . ,xn are Boolean expressions in x1, . . . ,xn;

• If ϕ and ψ are Boolean expressions in x1, . . . ,xn, then (ϕ∨ψ), (ϕ∧ψ), and ϕ are Boolean expressions
in x1, . . . ,xn.

Given a Boolean expression ϕ, we call ∨, ∧, and the negation operator • the operators of the expression.
A literal is either a variable or its complement.

We will adopt the convention that the operators have precedence, in decreasing order: complementation,
conjunction, then disjunction. Along with the associativity properties, these precedence assumptions
allow us to simplify Boolean expressions by removing extraneous parentheses. For instance, (((x∨y)(y∨
z)) ∨ ((xy)z)) simplifies to (x ∨ y)(y ∨ z) ∨ xyz.

Every Boolean expression ψ represents a unique boolean function fψ in the obvious way. Two Boolean
expresions ϕ and ψ are equivalent if they represent the same Boolean function, and we write ϕ = ψ to
denote this relation.

Note the basic identities in the previous theorem preserve equivalence of Boolean expressions.

1.5 Duality

Given a Boolean function f , we define the dual fd of f to be the Boolean function

fd(x1, . . . ,xn) := f(x1, . . . ,xn)

If X = (x1, . . . ,xn), we abbreviate the vector of complemented variables by X = (x1, . . . ,xn), so fd(X) =

f(X).

The vector of values of the dual fd is given by vertically reflecting the vector of values of f , then
complementing pointwise.

Example.

x,y f(x,y) fd(x,y)
00 0 0
01 1 0
10 1 0
11 1 1

This shows that the dual of disjunction is conjunction, and vice versa. △

Theorem 1.3. If f and g are Boolean functions, then,

(i) (fd)d = f ;

(ii) f
d
= fd;

(iii) (f ∨ g)d = fd ∧ gd;

Algebraic Geometry | 3
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(iv) (f ∧ g)d = fd ∨ gd.

Proof.

(i) Since complementation is involutive,

(fd)d(X) = fd(X)

= f(X)

= f(X)

(ii) Similarly,

f
d
(X) = f(X)

= fd(X)

(iii) By De Morgan’s laws,

(f ∨ g)d = (f ∨ g)(X)

= f(X) ∨ g(X)

= f(X) ∧ g(X)

= fd(X) ∧ gd(X)

(iv) Dually,

(f ∧ g)d = (f ∧ g)(X)

= f(X) ∧ g(X)

= f(X) ∨ g(X)

= fd(X) ∨ gd(X)

■

Given a Boolean expression ϕ, we define the dual ϕd of ϕ to be the Boolean expression obtained from ϕ
by interchanging the operators ∨ and ∧, and the constants 0 and 1.

Theorem 1.4. If the Boolean expression ϕ represents the Boolean function f , then ϕd represents fd.

Proof. We proceed by structural induction on ϕ. If ϕ is a constant or literal, then this is clear by
involution. Otherwise, suppose ϕ = ϕ1∨ϕ2 for some expressions ϕ1 and ϕ2. By the induction hypothesis,
the expressions ϕd1 and ϕd2 represent the duals fdϕ1

and fdϕ2
respectively, so ϕd = ϕd1 ∧ ϕd2 represents the

dual fdϕ1
∧ fdϕ2

of fϕ1
∨ fϕ2

= fϕ. The proof for ϕ = ϕ1 ∧ ϕ2 and ϕ = ψ are similar. ■

1.6 Normal Forms
An elementary conjunction or a term is a conjunction of literals, and an elementary disjunction or a
clause is a disjunction of literals. That is, an elementary conjunction is an expression of the form

C =
∧
i∈A

xi ∧
∧
j∈B

xj , A ∩B = ∅

Algebraic Geometry | 4



MA3K6 1.6 Normal Forms

and an elementary disjunction is an expression of the form

D =
∨
i∈A

xi ∨
∨
j∈B

xj , A ∩B = ∅

That is, a variable can appear only once, and only either complemented or not.

A disjunctive normal form (DNF ) is a disjunction of terms, and a conjunctive normal form (CNF ) is a
conjunction of clauses. That is, a DNF is a expression of the form

m∨
k=1

Ck =

m∨
k=1

 ∧
i∈Ak

xi ∧
∧
j∈Bk

xj


where each Ck is a term, and a CNF is an expression of the form

m∧
k=1

Dk =

m∧
k=1

 ∨
i∈Ak

xi ∨
∨
j∈Bk

xj


where each Dk is a clause.

Theorem 1.5. Every Boolean function admits a DNF and a CNF representation.

Proof. Let f be a Boolean function and let T = T (f) be the set its of true points. Consider the DNF

ϕf (x1, . . . ,xn) =
∨
Y ∈T

 ∧
i:yi=1

xi ∧
∧

j:yj=0

xj

 (1)

Then, a point X∗ is a true point of the function F represented by ϕf if and only if there exists a true
point Y = (y1, . . . ,yn) ∈ T of f such that∧

i:yi=1

x∗i ∧
∧

j:yj=0

x∗j = 1

But this just means that x∗i = 1 whenever yi = 1 and x∗j = 0 whenever yi = 0. That is, X∗ = Y . Hence
X∗ is a true point of F if and only if it is a true point of f , and hence f = F is represented by ϕf .

Similar reasoning establishes that f is also represented by the CNF

ϕf (x1, . . . ,xn) =
∧
Y ∈F

 ∨
i:yi=0

xi ∨
∨

j:yj=1

xj

 (2)

where F = F (f) is the set of false points of f . Alternatively, this expression can be obtained as the dual
of (1). ■

The expressions in (1) and (2) are of a special form. In particular, every term in (1) contains n literals.
Such a term is called a minterm, and the whole expression (1) representing f is called the minterm
expression or canonical DNF of f . Similarly, every clause in (2) contains n literal and is called a
maxterm, and the whole expression (2) is called the maxterm expression or canonical CNF of f .

The proof above gives an easy way to construct the canonical DNF/CNF of a function from its truth
table. For the canonical DNF:

• Identify all rows where the function output is 1;

Algebraic Geometry | 5



MA3K6 1.6 Normal Forms

• For each row, write a minterm by including each variable with polarity corresponding to its ap-
pearance in the row;

• Take the disjunction of all the minterms.

That is, each minterm corresponds to a unique input combination, so we take the ones where the function
is true, then allow any of the combinations by taking a disjunction.

Similarly, for the canonical CNF:

• Identify all rows where the function output is 0;

• For each row, write a maxterm by including each variable with polarity opposite to its appearance
in the row;

• Take the conjunction of all the maxterms.

Dually, each maxterm corresponds to the complement of a unique input combination, i.e. evaluates to
false for only one input, so we take the ones where the function is false, then mask out the false rows by
taking a conjunction.

Example. Consider the following function:

x,y,z f(x,y,z)
000 1
001 0
010 1
011 1
100 0
101 0
110 1
111 1

This function is represented by the DNF

x y z ∨ xyz ∨ xyz ∨ xyz ∨ xyz

and the CNF
(x ∨ y ∨ z)(x ∨ y ∨ z)(x ∨ y ∨ z)

△

A canonical DNF and CNF is unique up to permutation of its terms and literals. However, a function
generally admits many other non-canonical DNF and CNF representations.

Example. The function from the previous example can also be represented by the DNF

x z ∨ y

△

The degree of a term C =
∧
i∈A xi

∧
j∈B xj is the number of literals appearing in C. That is, |A|+ |B|.

More generally, the degree of a DNF ϕ =
∨m
k=1 Ck is the maximum degree of the Ck. A DNF is called

linear if its degree is at most 1, quadratic if at most 2, cubic if at most 3, etc. We write |ϕ| for the
number of literals in ϕ, also called its length; and ∥ϕ∥ for the number of terms in ϕ.

Example. The DNF ϕ = x z ∨ y has |ϕ| = 3 literals and ∥ϕ∥ = 2 terms, and has term degrees 2 and 1,
and is thus of degree 2, or is quadratic. △

The following example shows that a shortest DNF may have a length exponential in the number of
variables.

Algebraic Geometry | 6



MA3K6 1.7 Orthogonal DNFs

Example. The function represented by the CNF

ψ(x1, . . . ,x2n) = (x1 ∨ x2)(x3 ∨ x4) · · · (x2n−1 ∨ x2n)

has a unique shortest DNF consisting of 2n terms, each containing exactly one literal from each clause
of ψ. △

1.7 Orthogonal DNFs
A DNF

ϕ =

m∨
k=1

Ck =

m∨
k=1

 ∧
i∈Ak

xi ∧
∧
j∈Bk

xj

 , Ak ∩Bk = ∅

is orthogonal or is a sum of disjoint products if (Ak ∩Bℓ) ∪ (Aℓ ∩Bk) ̸= ∅ for all k ̸= ℓ.

That is, a DNF is orthogonal if every pair of terms is “conflicting” in at least one variable; there must exist
a variable that appears complemented in one term and uncomplemented in the other. Alternatively, a
DNF is orthogonal if and only if the product (conjunction) of every pair of its terms is 0 at every Boolean
point (since conflicting variables would yield 0 in the product).

Example. The DNF ϕ = x1x2x4 ∨ x1x3x4 is not orthogonal since x1 is negative in both terms, x2 and
x3 do not appear in both terms, and x4 is positive in both terms, so none of the variables are in conflict.
Alternatively, both terms (and hence their product) are equal to 1 at 0011. △

Note that orthogonality is not preserved under equivalence.

Example. The DNF ϕ is equivalent to the DNF ψ = x1x2x4 ∨ xhx2x3x4, which is orthogonal since its
only pair of terms are conflicting at the variable x2. △

Note that the minterm expression constructed in the proof of Theorem 1.5 is orthogonal, so we can
specialise the result further to:

Theorem 1.6. Every Boolean function can be represented by an orthogonal DNF.

One of the main motivations for our interest in orthogonal DNFs is that the number of true points
ω(f) :=

∣∣T (f)∣∣ of a function f expressed in this form can be efficiently computed.

Theorem 1.7. If a Boolean function f on Bn is represented by an orthogonal DNF, then the number of
its true points is

ω(f) =

m∑
k=1

2n−|Ak|−|Bk|

Proof. The DNF takes the value 1 precisely when one of its terms takes the value 1. ■

The Chow parameters of a Boolean function f on Bn are the n+1 integers (ω1, . . . ,ωn,ω) where ω = ω(f)
is the number of true points of f and ωi is the number of true points X∗ = (x∗1, . . . ,x

∗
n) of f with x∗i = 1.

Example. The function f represented by the orthogonal DNF ψ = x1x2x4 ∨ x1x2x3x4 is true at 0001,
0011, and 0111. None of these have x1 = 1; 1 has x2 = 1; 2 have x3 = 1; 3 have x4 = 1; and there are 3
total true points; so its Chow parameters are (ω1,ω2)(0,1,2,3,3). △

The same reasoning as in the proof of the previous theorem also shows that the Chow parameters of a
function represented in orthogonal form can be efficiently computed: for ω, this is precisely the statement
of the theorem; for ωi, this follows from the fact that the DNF obtained by fixing xi = 1 in an orthogonal
DNF is still orthogonal.
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1.8 Implicants
Given two Boolean functions f,g : Bn → B, we say that f implies g, that f is a minorant of g, or that
g is a majorant of f , and write f ≤ g, if f(X) = 1 implies g(X) = 1 for all X ∈ Bn. That is, f implies
g pointwise. Equivalently, if we identify each function f with its set of true points, then this relation is
precisely the subset containment relation.

This definition extends to Boolean expressions in the obvious way. We will often identify Boolean
functions with representing Boolean expressions, and write, for instance, ψ ≤ f for ψ ≤ ϕf .

Theorem 1.8. For all Boolean functions f,g : Bn → B, the following are equivalent:

(i) f ≤ g;

(ii) f ∨ g = g;

(iii) f ∨ g = 1n;

(iv) f ∧ g = f ;

(v) f ∧ g = 0n.

Proof. It suffices to note that each of these statements fail precisely when there exists X ∈ Bn such that
f(X) = 1 but g(X) = 0. ■

Theorem 1.9. For all Boolean functions f,g,h : Bn → B,

(i) 0n ≤ f ≤ 1n;

(ii) f ∧ g ≤ f ≤ f ∨ g;

(iii) f = g if and only if f ≤ g and g ≤ f ;

(iv) (f ≤ h and g ≤ h) if and only if f ∨ g ≤ h;

(v) (f ≤ g and f ≤ h) if and only if f ≤ g ∧ h;

(vi) if f ≤ g, then f ∧ h ≤ g ∧ h;

(vii) if f ≤ g, then f ∨ h ≤ g ∨ h;

For two Boolean function represented by arbitrary Boolean expressions, it can be non-trivial to verify
whether or not f implies g. However, for elementary conjunctions, implication is easy to verify. An
elementary conjunction implies another elementary conjunction if and only if the latter results from the
former by deleting literals, i.e. by removing constraints.

Theorem 1.10. The elementary conjunction CAB =
∧
i∈A xi∧

∧
j∈B xj implies the elementary conjunc-

tion CXY =
∧
i∈F xi ∧

∧
j∈G xj if and only if F ⊆ A and G ⊆ B.

Proof. Suppose that F ⊆ A and G ⊆ B, and let X ∈ Bn. If CAB(X) = 1, then xi = 1 for all i ∈ A and
xj = 0 for all j ∈ B. So in particular, xi = 1 for all i ∈ F and xj = 0 for all j ∈ G, so CFG = 1 and
hence CAB ≤ CFG.

Conversely, suppose CAB ≤ CFG, and suppose for a contradiction that F ̸⊆ A, so there exists k ∈ F \A.
Fix xi = 1 for all i ∈ A and xj = 0 for j /∈ A, and let X = (x1, . . . ,xn). Then, CAB(X) = 1, but
CFG(X) = 0 since xk = 0 and k ∈ F . ■

Let f be a Boolean function and C be an elementary conjunction. Then, C is an implicant of f if C ≤ f .

Theorem 1.11. If ϕ is a DNF representation of f , then every term of ϕ is an implicant of f . Moreover,
if an elementary conjunction C is an implicant of f , then the DNF ϕ ∨ C also represents f .

Algebraic Geometry | 8



MA3K6 1.9 Generation of All Prime Implicates from a DNF Representation

Proof. Firstly, note that whenever any term of ϕ takes the value 1, then the entire disjunction ϕ, and
hence f , takes the value 1. Then, ϕ ∨ C ≤ f since ϕ and C both imply f , and f ≤ ϕ ≤ ϕ ∨ C, so f is
represented by ϕ ∨ C. ■

Example. Let f = xy ∨ xyz. Then, the terms xy and xyz are implicants of f . The term xz is also an
implicant of f , so xy ∨ xyz ∨ xz also represents f . △

Let f be a Boolean function and C1 and C2 be implicants of f . Then, C1 absorbs C2 if C1 ∨ C2 = C1,
or equivalently, if C2 ≤ C1.

Let f be a Boolean function and C be an implicant of f . Then, C is a prime implicant of f if C is not
absorbed by any other implicant of f . That is, a prime implicant is a maximal conjunction implying f .

Theorem 1.12. Every Boolean function can be represented by the disjunction of all its prime implicants.

Proof. Let f be a Boolean function on Bn with prime implicants P1, . . . ,Pm. Consider any DNF repre-
sentation of f , say ϕ =

∨r
k=1 Ck. Then, the DNF

ψ =

r∨
k=1

Ck ∨
m∨
k=1

Pj

Now, every term Ck is an implicant of f and is hence absorbed by some prime implicant Pj . So
Ck ∨ Pj = Pj , and ψ =

∨m
j=1 Pj represents f . ■

The DNF of all prime implicants of a Boolean function is called the complete DNF or Blake canonical
form of the function.

Example. Consider again the function f = xy ∨ xyz. Its prime implicants are xy and xz, so f = xy ∨ xz
is its complete DNF. △

An interesting corollary of this theorem is that every Boolean function is uniquely identified by the list
of its prime implicants. Equivalently, two Boolean functions are equal if and only if they have the same
complete DNF.

Let ϕ =
∨
k∈Ω Ck be a DNF representation of a Boolean function f on Bn. We say that ϕ is a prime

DNF of f if each term Ck is a prime implicant of f . We say that ϕ is an irredundant DNF of f if there
is no j ∈ Ω such that ψ =

∨
k∈Ω\{j} Ck represents f .

The notion of (prime) implicants naturally have a dual notion for disjunctions. Let f be a Boolean
function and D be an elementary disjunction. Then, D is an implicate of f if f ≤ D, and is furthermore
a prime implicate if it is not implied by any other implicate of f . That is, a prime implicate is a minimal
disjunction implied by f .

Theorem 1.13. Every Boolean function can be represented by the conjunction of all its prime implicates.

Example. The function g = xy ∨ xy ∨ xz has four implicates, namely (x∨ y), (x∨ y ∨ z), (x∨ y ∨ z), and
(x ∨ y ∨ z). Only the first and last implicate in this list are prime, so g = (x ∨ y)(x ∨ y ∨ z). △

1.9 Generation of All Prime Implicates from a DNF Representation
If xC and xD are two elementary conjunctions such that CD is not identically 0, then we say that CD
is the consensus of xC and xD, and that CD is derived from xC and xD by consensus on x.

Given an arbitrary DNF ϕ, the consensus procedure generates the complete DNF equivalent to ϕ by
repeatedly applying the operations of absorption (x ∨ xy = x) and consensus:

• If there exist two terms C and D of ϕ such that C absorbs D, remove D from ϕ.
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• If there exist two terms xiC and xiD of ϕ such that xiC and xiD have a consensus CD that is not
absorbed by another term of ϕ, then add CD to ϕ.

The procedure halts when:

• the absorption operation cannot be applied, and;

• either the consensus operation cannot be applied, or all the terms that can be produces by consensus
are absorbed by other terms of ϕ.

A DNF is closed under absorption if it satisfies the first stopping condition, and is closed under consensus
if it satisfies the second.

The consensus procedure always terminates and produces a DNF closed under consensus and absorption
in a finite number of steps. Indeed, the number of terms in the given variables is finite, and once a term
is removed by absorption, it will never be added by consensus.

Example. Consider the DNF

ϕ(x1,x2,x3,x4) = x1x2x3 ∨ x1x2x4 ∨ x2x3x4

Absorption is not possible. We can apply consensus on x1 on the first two terms to obtain the term
x2x3x2x4 = x2x3x4 not absorbed by any term of ϕ, to obtain the DNF

ϕ′(x1,x2,x3,x4) = x1x2x3 ∨ x1x2x4 ∨ x2x3x4 ∨ x2x3x4

Again, absorption is not possible. We can apply consensus on x2 on the last two terms to obtain the
term x3x4 not absorbed by any existing terms:

ϕ′′(x1,x2,x3,x4) = x1x2x3 ∨ x1x2x4 ∨ x2x3x4 ∨ x2x3x4 ∨ x3x4

The new term absorbs the previous two:

ϕ′′(x1,x2,x3,x4) = x1x2x3 ∨ x1x2x4 ∨ x3x4

Now, neither consensus and absorption can be applied, so the procedure stops, and these three terms
are the prime implicants of ϕ. △

We have already observed that the operations of absorption and consensus transform DNFs,but do not
change the Boolean functions that they represent. This is implied by the two lemmata below, which
easily follow from the basic Boolean identities.

Lemma 1.14. For any two elementary conjunctions C and CD,

C ∨ CD = C

Lemma 1.15. For any two elementary conjunctions xC and xD,

xC ∨ xD = xC ∨ xD ∨ CD

The importance of the consensus procedure is due to the fact that it produces the complete DNF. To
prove this, we need one more lemma.

Lemma 1.16. Given any DNF ϕ of a Boolean function f , if C is an implicant of f that involves all
variables present in ϕ, then C is absorbed by a term of ϕ.

Proof. If C contains all the variables of ϕ, then the valuation of that makes C = 1 assigns values to all
the variables in ϕ. Since C is an implicant of f , this assignment also makes ϕ = 1, and hence at least
one term of ϕ is 1. This term absorbs C. ■
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Theorem 1.17. Given any DNF ϕ of a Boolean function f , the consensus procedure applied to ϕ yields
the complete DNF of f .

Proof. Suppose otherwise that there exists a Boolean function f and a DNF ϕ of f such that the consensus
procedure produces a DNF ψ that does not contain a prime implicant C0 of f . Then, by Theorem 1.20,
C0 only involves variables present in ψ. Consider the set S of elementary conjunctions C satisfying the
following conditions:

• C only contains variables present in ψ;

• C ≤ C0 (and therefore C is an implicant of f);

• C is not absorbed by any term in ψ.

The set S is non-empty since C0 satisfies all three conditions, so let Cm be a term of maximum degree
in S. Since Cm is not absorbed by any term in ψ, Cm cannot involve all the variables present in ψ by
the previous lemma. Let x be a variable present in ψ not present in Cm. The degree of the elementary
conjuctions xCm and xCx exceeds that of Cm, and since the degree of Ctm is maximum, xCm and xCm
do not belong to S and therefore cannot satisfy all three conditions. Since they clearly must satisfy the
first two conditions, they must violate the third, so there must exist terms C ′ and C ′′ in ψ such that
xCm ≤ C ′ and xCm ≤ C ′′. Since Cm is not absorbed by either C ′ nor C ′′, it follows that C ′ = xD′ and
C ′′ = xD′′, where D′ and D′′ are elementary conjunctions that absorb Cm. This implies that D′ and
D′′ do not conflict in any variable. Therefore, the consensus of C ′ and C ′′ exists, namely D′D′′, and this
term absorbs Cm. Since the consensus procedure stops on the DNF ψ, there must exist a term C ′′′ in ψ
that absorbs D′D′′. Then, C ′′′ must also absorb Cm, contradicting the assumption that Cm ∈ S. ■

1.10 Restrictions of Functions, Essential Variables
Let f be a Boolean function on Bn and let k ∈ [n]. We define the restrictions f |xk=1 and f |xk=0 to be
the Boolean functions on Bn−1 defined by:

f |xk=1(x1, . . . ,x̂k, . . . ,xn) = f(x1, . . . ,xk−1,1,xk+1, . . . ,xn)

f |xk=0(x1, . . . ,x̂k, . . . ,xn) = f(x1, . . . ,xk−1,0,xk+1, . . . ,xn)

That is, the functions obtained from f by fixing its kth argument to 1 and 0 respectively.

Example. Consider the function f(x,y,z) = (xz ∨ y)(x ∨ z) ∨ x y. Then,

f |x=1(y,z) = (1z ∨ y)(1 ∨ z) ∨ 1y

= z ∨ y

f |x=0(y,z) = (0z ∨ y)(0 ∨ z) ∨ 0y

= yz ∨ y
= y ∨ z

△

Theorem 1.18. Let f be a Boolean function on Bn, let ψ be a representation of f and let k ∈ [n]. Then,
the expression obtained by substituting the constant 1 (respectively, 0) for every occurrence of xk in ψ
represents f |xk=1 (respectively, f |xk=0).

Theorem 1.19. Let f be a Boolean function on Bn and let k ∈ [n]. Then,

f(x1, . . . ,xn) = xkf |xk=1 ∨ xkf |xk=0

Proof. Clear by case analysis on the value of xk. ■
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The right side of this identity is called the Shannon expansion of f with respect to xk. By applying the
Shannon expansion to a function and its successive restrictions until these restrictions become constants
or literals, we obtain an orthogonal DNF of the function, which can easily be proved by induction.
However, not every orthogonal DNF can be obtained in this way, since the Shannon expansion necessarily
produces a DNF in which one of the variables appears in all of the terms.

Example. Consider the function f = (xz ∨ y)(x ∨ z) ∨ x y from the previous example. The Shannon
expansion of f |x=1 with respect to y is

f |x=1 = yf |x=1,y=1 ∨ yf |x=1,y=0

= y(z ∨ 1) ∨ y(z ∨ 0)

Note that z ∨ 1 = 1 is a constant and z ∨ 0 = z is a literal, so we stop here for the expansion of f |y=1.
The Shannon expansion of f |x=0 with respect to y is

f |x=0 = yf |x=0,y=1 ∨ yf |x=0,y=0

= y(1 ∨ z) ∨ y(0 ∨ z)

Here, 1 ∨ z = z is a literal and 0 ∨ z = 1 is a constant, so we stop here for the expansion of f |x=0. So,
an orthogonal DNF of f is given by:

f(x,y,z) = xf |x=1 ∨ xf |x=0

= x(yf |x=1,y=1 ∨ yf |x=1,y=0) ∨ x(yf |x=0,y=1 ∨ yf |x=0,y=0)

= x(y1 ∨ yz) ∨ x(yz ∨ y1)
= xy ∨ xyz ∨ xyz ∨ x y

Another orthogonal DNF of f is
xy ∨ x z ∨ yz

However, this DNF cannot be obtained from successive Shannon expansions since there is no variable
common to all three terms. △

Let f be a Boolean function on Bn and let k ∈ [n]. The variable xk is inessential for f , or that f does
not depend on xk if f |xk=1(X) = f |xk=0(X) for all X ∈ Bn−1. That is, the value of f is the same,
regardless of the value of xk.

Theorem 1.20. Let f be a Boolean function on Bn and let k ∈ [n]. Then, the following are equivalent:

(i) The variable xk is inessential for f ;

(ii) The variable xk does not appear in any prime implicant of f ;

(iii) f has a DNF representation in which the variable xk does not appear.

Proof. (ii) → (iii) since any function can be represented by a DNF of its prime implicants (Theo-
rem 1.12), and (iii) → (i) by Theorem 1.18.

Now, suppose the variable xk is inessential for f , and consider an implicant CAB =
∧
i∈A xi

∧
j∈B xj

of f . Suppose that k ∈ A (the argument being symmetric for k ∈ B), and consider the conjunction C
obtained by deleting xk from CAB :

C =
∧

i∈A\{k}

xi
∧
j∈B

xj

We claim that C is an implicant of f , and therefore any prime implicant need not involve xk. Let
X = (x1, . . . ,xn) ∈ Bn such that C(X) = 1. Since neither C nor f depend on xk, we may suppose that
xk = 1 in X. Then, C(X) = XAB(X) = 1, and hence f(X) = 1. ■
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It should be clear that any particular representation of a Boolean function may involve a variable that
the function does not depend on.

Example. The DNF ϕ(x1,x2,x3,x4) = x1x2 ∨ x1x2 ∨ x1x2 ∨ x1x2 represent the constant function 14. In
particular, ϕ does not depend on any of its variables. △

Finally, let us mention an interesting connection between essential variables and Chow parameters.

Theorem 1.21. Let f be a Boolean function on Bn, let (ω1, . . . ,ωn,ω) be its vector of Chow parameters,
and let k ∈ [n]. Then, if the variable xk is inessential for f , then ω = 2ωk.

Proof. The sets A =
{
X ∈ T (f) : xk = 1

}
and B =

{
X ∈ T (f) : xk = 0

}
of true points with xk = 1 and

xk = 0, respectively, partition T (f), with |A| = ωk and |B| = ω−ωk. If xk is inessential, then |A| = |B|,
so ω = 2ωk. ■

The converse fails in general, however. For instance, the function f(x1,x2) = x1x2 ∨ x1x2 has Chow
parameters (1,1,2), and both variables x1,x2 are essential.

1.11 Monotone Boolean Functions
Let f be a Boolean function on Bn and let k ∈ [n]. We say that f is positive in the variable xk if
f |xk=0 ≤ f |xk=1. Dually, f is negative in xk if f |xk=1 ≤ f |xk=0. More generally, f is monotone in xk if
it is positive or negative in xk.

To check that a variable is positive or negative, we can just check that flipping that variable from 0 to 1
does not decrease the value of the function.

Example. Consider the function:

x,y,z f(x,y,z)
000 0
001 0
010 0
011 1
100 0
101 1
110 1
111 1

Notation:
output→output

input → input.

• x is positive, since we have
0→0

000 → 100,
0→1

001 → 101,
0→1

010 → 110, and
0→1

011 → 111 all non-decreasing;

• y is positive, as we have
0→0

000 → 010,
0→1

001 → 011,
0→1

100 → 110, and
1→1

101 → 111 all non-decreasing;

• z is positive, as we have
0→0

000 → 001,
0→0

010 → 011,
0→1

100 → 101, and
1→1

110 → 111 all non-decreasing.

△

The function f is furthermore positive (respectively, negative) if it is positive (respectively, negative) in
every variable, and monotone if it is positive or negative in each variable (not necessarily all positive or
all negative).

Example. The function above is positive, since it is positive in all of its variables. △

Theorem 1.22. Let f be the Boolean function on Bn, and let g be the function defined by

g(x1,x2, . . . ,xn) = f(x1,x2, . . . ,xn)
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Then, g is negative in x1 if and only if f is positive in x1.

Proof. If f is positive in x1, then changing x1 from 0 to 1 does not decrease the value of f . But changing
x1 from 0 to 1 in f is same as changing x1 from 1 to 0 in g, and g shares the same output values as f
when x1 is reversed, so changing x1 from 1 to 0 does not decrease the value of g, i.e. g is negative in
x1. ■

Theorem 1.23. A Boolean function f on Bn is positive if and only if f(X) ≤ f(Y ) for all X,Y ∈ Bn
such that X ≤ Y .

Proof. Suppose that f is positive, so f |xk=0 ≤ f |xk=1 for all k ∈ [n], and let X,Y ∈ Bn with X ≤ Y .
Consider the sequence of Boolean points

X = Z1 ≤ Z2 ≤ · · · ≤ Zk = Y

where Zi+1 is obtained from Zi by flipping the first bit of Zi that disagrees with Y , say in the kith
position. Note that since X ≤ Y , all such flip change a 0 to a 1. Then, since f is positive in each variable
and in particular in xki , we have

f(Zi) = f |xki
=0(Z

i+1) ≤ f |xki
=1(Z

i+1) = f(Zi+1)

so by induction,
f(X) = f(Z1) ≤ f(Z2) ≤ · · · ≤ f(Zk) = f(Y )

Conversely, suppose f(X) ≤ f(Y ) whenever X ≤ Y . Let k ∈ [n], and let X̃ = (x1, . . . ,x̂k, . . . ,xn) ∈ Bn−1

be any assignment of values to all variables apart from xk. Then, the Boolean points X,Y ∈ Bn obtained
from X̃ by assigning the value xk = 0 and xk = 1, respectively,satisfy X ≤ Y , and thus,

f |xk=0(X̃) = f(X) ≤ f(Y ) = f |xk=1(X̃)

so f |xk=0 ≤ f |xk=1. ■

Let ψ(x1, . . . ,xn) be a DNF and let k ∈ [n]. Then,

• ψ is positive (respectively, negative) in the variable xk if the complemented literal xk (respectively,
uncomplemented literal xk) does not appear in ψ;

• ψ is monotone in xk if ψ is either positive or negative in xk;

• ψ is positive (respectively, negative) if it is positive (respectively, negative) in all of its variables;

• ψ is monotone if it is positive or negative in each of its variables.

Example.

• Every elementary conjunction is monotone since a variable appears in it at most once.

• The DNF ϕ(x,y,z) = xy ∨ xy z ∨ xz is positive in x, and is neither positive nor negative (i.e. is not
monotonic) in x and y.

• The DNF ψ(x,y,z) = xy ∨ xz ∨ yz is positive in x, positive in y, and negative in z and is thus
monotone, but neither negative nor positive. △

Every positive DNF represents a positive function: since all literals are positive, increasing any input
variable from 0 to 1 cannot cause a term to decrease.

However, the converse is not true in general: a non-positive, or even non-monotone DNF may represent
a positive function. For instance, ϕ(x,y,z) = xy∨xy z∨xz represents the positive function f(x,y,z) = x.

Algebraic Geometry | 14



MA3K6 1.11 Monotone Boolean Functions

The next theorem characterising positive variables closely mirrors a previous result characterising inessen-
tial variables, Theorem 1.20, in the sense that f being positive in xk means that the negative literal xk
is “inessential” in f .

Theorem 1.24. Let f be a Boolean function on Bn and let k ∈ [n]. Then, the following are equivalent:

(i) f is positive in xk;

(ii) The literal xk does not appear in any prime implicant of f ;

(iii) f has a DNF representation in which the literal xk does not appear.

Proof. As for Theorem 1.20, (ii) → (iii) since any function can be represented by a DNF of its prime
implicants (Theorem 1.12), and (iii) → (i) by Theorem 1.18, since if ϕ =

∨m
j=1 Cj is any DNF repre-

senting f where xk does not appear, then the substitution xk = 1 has no effect on any terms involving
xk, while the substitution xk = 0 deletes any such terms, and hence f |xk=0 ≤ f |xk=1.

Now, suppose f is positive in xk and consider an prime implicant CAB =
∧
i∈A xi

∧
j∈B xj of f . If k /∈ B,

then we are done, so otherwise suppose k ∈ B and consider the conjunction C obtained by deleting xk
from CAB :

C =
∧
i∈A

xi
∧

j∈B\{k}

xj

Since CAB is prime, C is not an implicant of f , so there exists a point X = (x1, . . . ,xn) ∈ Bn such that
C(X) = 1 but f(X) = 0. Since CAB is an implicant of f , we must have CAB(X) = 0 and hence xk = 1.
Now consider the point Y ∈ Bn equal to X in every component apart from the kth, where yk = 0. Then,
CAB(Y ) = 1, and hence f(Y ) = 1, contradicting that f is positive in xk. ■

Corollary 1.24.1. A Boolean function is positive if and only if it can be represented by an expression
with no complemented variables.

Theorem 1.25. Let ϕ and ψ be DNFs and suppose that ψ is positive. Then, ϕ implies ψ if and only if
each term of ϕ is absorbed by some term of ψ.

Proof. Suppose without loss of generality that ϕ and ψ are expressions in the same n variables. The
forward direction follows immediately from Theorem 1.10. Conversely, suppose ϕ implies ψ and consider
some term of ϕ, say,

Ck =
∧
i∈I

xi
∧
j∈B

xj

Let eA be the characteristic vector of A, so Ck(eA) = ϕ(eA) = 1. Since ϕ implies ψ, we have ϕ(eA) = 1,
and thus some term Cj =

∧
i∈F xi of ψ satisfies Cj(eA), and thus F ⊆ A, so Cj absorbs Ck as required. ■

Theorem 1.26. The complete DNF of a positive Boolean function f is positive and irredundant, and is
furthermore the unique prime DNF of f .

Proof. Let f be a positive Boolean function with prime implicants P1, . . . ,Pn, and let ψ =
∨m
i=1 Pi be the

complete DNF of f . By Theorem 1.24, ψ is positive. Now, let ϕ =
∨r
k=1 Pk be any prime expression of

f , where r ∈ [m]. Since f = ϕ = ψ, we have in particular that ψ implies ϕ, so by the previous theorem,
each term of ψ is absorbed by some term of ϕ. In particular, if m > r, then Pm must be absorbed by
some other prime implicant Pk for k ≤ r, contradicting the primality of Pm. So, r = m, and hence ψ = ϕ
is irredundant and unique. ■

This theorem shows that the complete DNF provides a “canonical” shortest DNF representation of a
positive Boolean function. Since a shortest DNF representation is necessarily prime and irredundant, no
other DNF representation of a positive Boolean function can be as short as its complete DNF.
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Theorem 1.27. Let ϕ =
∨m
k=1

(∧
i∈Ak

xi
∧
j∈Bk

xj

)
be a DNF representation of a positive Boolean

function f . Then, ψ =
∨m
k=1

∧
i∈Ak

xi is a positive DNF representation of f , and the prime implicants
of f are the terms of ψ which are not absorbed by other terms of ψ.

Proof. Since every term of ϕ is absorbed by some term in ψ, i.e.
∧
i∈Ak

xi
∧
j∈Bk

xj by
∧
i∈Ak

xi and
ψ is positive, ϕ = f implies ψ. For the reverse inequality, consider any point X = (x1, . . . ,xn) ∈ Bn
such that ψ(X) = 1. Then, there is a term of ψ that takest the value 1 at X, or equivalently, one of
the terms defined by Ak has xi = 1 for all i ∈ Ak. Let eAk

be the characteristic vector of this Ak, so
ϕ(eAk

) = f(eAk
) = 1. Moreover, eAk

≤ X, and therefore, by the positivity of f , f(X) = 1, and hence
ψ ≤ f . So ψ = f .

For the second part of the statement, consider the complete DNF ψ∗ of f . Since ϕ is positive and ψ∗
implies ψ, every term of ψ∗ is absorbed by some term of ψ. However, the terms of ψ are implicants of f ,
while the terms of ϕ∗ are prime implicants of f , so all prime implicants of f must appear amongst the
terms of ψ. ■

Example. As mentioned previously, the DNF ϕ(x,y,z) = xy ∨ xy z ∨ xz represents the positive function
f(x,y,z) = x. By deleting all the negative literals from ϕ, we obtain the DNF ψ = xy ∨ x ∨ xz. The
terms xy and xz are absorbed by x, so they are not prime. The remaining term x is thus the only prime
implicant of f . △

Let f be a Boolean function on Bn and let X ∈ T (f) be a true point of f . Then, X is a minimial true
point of f if there is no distinct true point Y ̸= X such that Y ≤ X (pointwise). Dually, X ∈ F (f) is a
maximal false point of f if there is no distinct false point Y ̸= X such that X ≤ Y .

We denote by minT (f) the set of minimal true points of f , and maxF (f) the set of maximal false points
of f .

Theorem 1.28. Let f be a positive Boolean function on Bn and let Y ∈ Bn. Then,

(i) Y is a true point of f if and only if there exists a minimal true point X of f such that X ≤ Y ;

(ii) Y is a false point of f if and only if there exists a maximal false point X of f such that Y ≤ X.

Proof. The forward implications are trivial in both cases and are independent of the positivity assump-
tion. The reverse implications are straightforward corollaries of the characterisation of positivity as
f(X) ≤ f(Y ) whenever X ≤ Y . ■

Theorem 1.29. Let f be a positive Boolean function on Bn, let CA =
∧
i∈A xi be an elementary

conjunction, and let eA be the characteristic vector of A. Then,

(i) CA is an implicant of f if and only if eA is a true point of f ;

(ii) CA is a prime implicant of f if and only if eA is a minimal true point of f .

Proof.

(i) The forward implication is again trivial and independent of the positivity assumption. Conversely,
if eA is a true point of f , then

∧
i∈a xi

∧
j /∈A xj is an implicant of f . Then, by the positivity of f ,

CA is also an implicant of f by the same reasoning as in the proof of Theorem 1.27.

(ii) Let CB be an elementary conjunction, and let eB be the characteristic vector of B. Note that
CA ≤ CB if and only if B ⊆ A, or equivalently, eB ≤ eA. Together with (i), this implies that CA
is a prime implicant of f if and only if eA is a minimal true point of f .

■
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Example. Consider the positive function f(x,y,z,w) = xy ∨ xzw ∨ yz. Each term is a implicant, so the
indicator vectors 1100, 1011, and 0110 are true points of f .

Note that the positivity requirement in this theorem is essential:

(i) The function g(x,y) = xy has true point 10, but x is not an implicant of g;

(ii) The function h(x,y,z) = xy ∨ x z has prime implicants xy and x z with the corresponding true
points 110 and 101, but 000 is the unique minimal true point of g.

△

A dual correspondence also holds between maximal false points and prime implicates of a positive func-
tion:

Theorem 1.30. Let f be a positive Boolean function on Bn, let DA =
∨
i∈A xi be an elementary

disjunction, and let e[n]\A be the characteristic vector of [n] \A. Then,

(i) DA is an implicate of f if and only if eN\A is a false point of f ;

(ii) DA is a prime implicate of f if and only if eN\A is a maximal false point of f .

Proof. The structure of the previous proof also suffices for this result with minor modifications. Al-
ternatively, De Morgan’s laws and simple duality arguments can be applied to the previous theorem
statement. ■

Example. Again, consider the positive function f(x,y,z,w) = xy ∨ xzw ∨ yz. Its prime implicates are
x ∨ y, x ∨ z, y ∨ z, and y ∨ w, so the complementary indicator vectors 0011, 0101, 1001, and 1010 are
maximal false points of f . △

1.12 Other Representations of Boolean Functions
Boolean functions can be represented in many other ways than just truth tables and Boolean expressions.
In this section, we briefly outline some other representations.

1.12.1 Geometric Interpretation

The hypercube Qn is the graph with vertex set Bn, where two vertices are adjacent if and only if they
differ in one coordinate.

000 001

011010

100 101

111110

The hypercube Q3.

A subset S ⊆ Bn is a subcube of Qn if |S| = 2k for some k ≤ n, and there are n− k coordinates in which
all the vectors of S coincide. That is, a subcube (of dimension k) is obtained from Qn by fixing n − k
coordinates to 0 or 1.

Lemma 1.31. Let C =
∧
i∈A xi

∧
j∈B xj be an elementary conjunction of length k = |A∪B| ≤ n. Then,

the set of true points of C consists of 2n−k points and defines a subcube of Qn of codimension k.
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Proof. Let F = A∪B be the set of (indices of) variables present in C. Then, changing any of the n− k
variables not in F does not affect the value of C, so there are 2n−k true points of C. Moreover, these
true points all agree in the n − k coordinates fixed by F and hence describe a subcube of codimension
k. ■

Example. The elementary conjunction x1x3 on B3 has true points 001 and 011, which has first and last
coordinates fixed and hence describes a codimension-2 subcube. △

Corollary 1.31.1. There is a bijection between elementary conjunctions and subcubes of Qn.

Proof. The correspondence described in the previous theorem is a bijection. ■

We can represent a Boolean function f on Bn by colouring the vertices corresponding to true points
white, and vertices corresponding to false points black.

Example. The function f on B3 with true points T (f) = {001,010,011,110,111} is represented by:

000 001

011010

100 101

111110

△

In view of the previous discussion, an implicant of f then corresponds to a subcube of Qn that does
not contain any false points, and is furthermore prime if it is maximal with this property, i.e. is not
contained inside a larger subcube without false points.

Example. The expression x2x3 (i.e. the vertices of the form _11) is an implicant of the function f above,
since it defines the subcube:

000 001

011010

100 101

111110

However, it is not prime, since it is contained in the subcube
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000 001

011010

100 101

111110

△

Let ϕ =
∨m
k=1 Ck be a DNF representing f . The set of true points of f then coincides with the union

of the sets of true points of the terms Ck. So, a DNF representing f can be viewed as a collection of
subcubes of Qn that cover precisely the true points of f . In particular, an orthogonal DNF is one for
which the subcubes in the collection are all disjoint.

1.12.2 Representations of Boolean Functions over GF(2)

The exclusive-or function, Boolean XOR, or parity function is the Boolean function ⊕ : Bn → B defined
by

⊕(x1,x2) := x1x2 ∨ x1x2
We write this function in infix notation as x1⊕x2. When viewed as a binary operation, ⊕ is commutative
and associative, and the iteration

f(x1, . . . ,xn) = x1 ⊕ · · · ⊕ xn

takes the value 1 precisely when the number of 1s in (x1, . . . ,xn) is odd. Moreover, ⊕ defines addition
modulo 2 in the Galois field GL(2) =

(
{0,1},⊕ ,∧

) ∼= Z/2.

Theorem 1.32. For every Boolean function f on Bn, there exists a unique mapping c : P
(
[n]
)
→ {0,1}

such that
f(x1, . . . ,xn) =

⊕
A∈P

(
[n]
) c(A)∏

i∈A
xi

Proof. We provide a constructive proof from first principles. To establish the existence of this represen-
tation, we induct on the dimension n. For n = 1, such a representation exists since x = x and x = x⊕ 1.
Then, for n > 1, existence of the representation follows from the trivial identity,

f = f |xn=0 ⊕ xnf |xn=0 ⊕ xnf |xn=1

Indeed, by the inductive hypothesis, f |xn=1 and f |xn=1 have representations of the required form, and
hence, after removing any duplicated terms with the identity x ⊕ x = 0, f also has a representation of
this form.

For uniqueness, it suffices to observe that there are exactly 22
n

expressions of this form, and this is also
the number of Boolean functions on Bn. ■

These representations of Boolean functions over GL(2) are sometimes called Zhegalkin polynomials, Reed-
Muller expansions, or algebraic normal forms (ANF).

To compute the Zhegalkin polynomials of a function, we proceed essentially by comparing coefficients.
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Example. We represent the function f = (x1 ∨ x2)(x2 ∨ x3) as a Zhegalkin polynomial.

Let us write c123 = c({x1,x2,x3}), etc. for the coefficient mappings, so the general form of a Zhegalkin
polynomial on three variables is:

(x1 ∨ x2)(x2 ∨ x̄3) = c123x1x2x3 ⊕ c12x1x2 ⊕ c13x1x3 ⊕ c23x2x3 ⊕ c1x1 ⊕ c2x2 ⊕ c3x3 ⊕ c0

Now, compare coefficients by evaluating each side at each Boolean point in B3:

(i) (x1,x2,x3) = (0,0,0)
0 = c0

(ii) (x1,x2,x3) = (0,0,1)
0 = c3

(iii) (x1,x2,x3) = (0,1,0)
1 = c2

(iv) (x1,x2,x3) = (0,1,1)

1 = c23 ⊕ c2 ⊕ c3

1 = c23 ⊕ 1⊕ 0

0 = c23

(v) (x1,x2,x3) = (1,0,0)
1 = c1

(vi) (x1,x2,x3) = (1,0,1)

0 = c13 ⊕ c1 ⊕ c3

0 = c13 ⊕ 1⊕ 0

1 = c13

(vii) (x1,x2,x3) = (1,1,0)

1 = c12 ⊕ c1 ⊕ c2

1 = c12 ⊕ 1⊕ 1

1 = c12

(viii) (x1,x2,x3) = (1,1,1)

1 = c123 ⊕ c12 ⊕ c13 ⊕ c23 ⊕ c1 ⊕ c2 ⊕ c3

1 = c123 ⊕ 1⊕ 1⊕ 0⊕ 1⊕ 1⊕ 0

1 = c123

(x1 ∨ x2)(x2 ∨ x̄3) = x1x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x1 ⊕ x2

△

A Boolean function f on Bn is linear if there are coefficients c1, . . . ,cn ∈ {0,1} such that

f(x1, . . . ,xn) = c0 ⊕
n⊕
i=1

cixi

That is, each term is at most linear (i.e. it is an affine combination of variables).
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1.12.3 Decision Trees

A decision tree is a rooted directed binary tree in which every non-leaf vertex v is labelled by a variable
xj(v) for some labelling function j : V → [n], and every leaf vertex is labelled by the constants 0 or 1.

Every decision tree D corresponds to a Boolean function ϕD : Bn → B as follows. Let x = (x1, . . . ,xn)
be a binary vector. Starting from the root, we move between vertices on the tree, following the left arc
out of v if xj(v) = 0, and the right arc otherwise, and stop when we arrive at a leaf, in which case we say
that x is classified into this leaf. The label of the leaf then defines the value of ϕD(x).

Example. The decision tree

x2

x1

x3

0

1

0 1

represents the function:

x1,x2,x3 f(x1,x2,x3)
000 0
001 0
010 1
011 1
100 0
101 0
110 0
111 1

△

A decision tree can be converted into a DNF as follows:

• For each leaf vertex v with label 1, construct the term corresponding to the path from the root to
v, where a left arc corresponds to a complemented variable and a right arc to an uncomplemented
variable;

• Take the disjunction of all such terms.

Example. For the tree above, the left leaf node with label 1 has a left arc from x1, and a right arc from
x2, so the corresponding term is x1x2. The rightmost leaf node similarly has term x1x2x3. So, the DNF
is given by

x1x2 ∨ x1x2x3
△

We can also easily find the DNF for f by performing this algorithm on the leaves with label 0 instead.

Similar to DNF representations, decision tree representations are not unique.

2 Duality Theory

Recall that the dual fd of a Boolean function f(x1, . . . ,xn) is the function

fd(x1, . . . ,xn) = f(x1, . . . ,xn)
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Lemma 2.1. g = fd if and only if f(X) ∨ g(X) = 1 and f(X) ∧ g(X) = 0 for all X ∈ Bn.

Lemma 2.2. f ≤ g if and only if gd ≤ fd.

Theorem 2.3. Let ϕ =
∨m
k=1

(∧
i∈Pk

xi
∧
j∈Ni

xj

)
be a DNF of a Boolean function f , and let CPN =∧

i∈P xi
∧
j∈N xj be an elementary conjunction. Then,

(i) CPN is an implicant of fd if and only if

(P ∩ Pk) ∪ (N ∩Ni) ̸= ∅

for all k ∈ [m];

(ii) CPN is a prime implicant of fd if and only if (i) holds , for every P ′ ⊆ P and N ′ ⊆ N with
P ′ ∪N ′ ̸= P ∪N , there exists an index k ∈ [m] such that (P ′ ∩ Pk) ∪ (N ′ ∩Nk) = ∅.

Proof.

(i) By the definition of a dual function, CPN =
∧
i∈P xi

∧
j∈N xj is an implicant of fd if and only if

CNP =
∧
i∈P xi

∧
j∈N xj is an impcilant of f . Since f ∧ f = 0, the identity CPiNj

∧CNP = 0 must
hold, and hence (P ∩ Pi) ∪ (N ∩ Pi) ̸= ∅ for all i ∈ [m].

Conversely, if this intersection is non-empty, then f ∧ CNP = 0 holds identicallyh, so CNP is an
implicant of f .

(ii) This follows from the defition of prime implicants.

■

Note that in the previous theorem, the conjunctions CPiNi
could have been taken to be prime implicants,

rather than arbitrary implicants of f .

2.1 Dual-comparable Functions

A Boolean function f is dual-minor if f ≤ fd, dual-major if f ≥ fd, and self-dual if f = fd.

Example. The function f = x1x2x3 is dual-minor, with dual fd = x1 ∨ x2 ∨ x3:

x1,x2,x3 f fd

000 0 0
001 0 1
010 0 1
011 0 1
100 0 1
101 0 1
110 0 1
111 1 1

Equivalently, fd ≥ (fd)d = f is dual-major.

The function g = x1x2x3 ∨ x1x2x3 ∨ x1x2x3 ∨ x1x2x3 has dual

gd = (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)
= x1x2x3 ∨ x1x2x3 ∨ x1x2x3 ∨ x1x2x3
= g

so g is self-dual. △
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Theorem 2.4. Suppose that a Boolean function f has a prime implicant of degree 1. Then, f is dual-
major. Moreover, f is dual-minor (and hence self-dual) if and only if it has no other prime implicants.

Proof. Without loss of generality, suppose that x1 is a prime implicant of f , so f(x1, . . . ,xn) = x1 ∨
g(x2, . . . ,xn). Then, fd = x1g

d. Since f = 0 requires x1 = 0, we have fd = 0 whenever f = 0, so f is
dual-major.

Now, suppose that f has no other prime implicant. Since x1 is an implicant, f = 1 when x1 = 1; and
conversely, no point with x1 = 0 is covered by any implicant, so f = 0 if x1 = 0. Hence, f = x1 is a
projection, and is in particular self-dual.

Conversely, if f has another prime implicant, then there exists a point X = (x∗1, . . . ,x
∗
n) ∈ Bn such that

x∗1 = 0 and f(x∗1, . . . ,x∗n) = 1. But x∗1 = 0 implies fd(x∗1, . . . ,x∗n) = 0, so f is not dual-minor. ■

The following result can be viewed as a restatement of the definition of dual comparisons:

Theorem 2.5. Let f be a Boolean function on Bn. Then,

(i) f is dual-minor if and only if the complement of every true point of f is a false point of f . That
is, for all X ∈ Bn, f(X) = 1 implies f(X) = 0, or equivalently, f(X)f(X) = 0.

(ii) f is dual-major if and only if the complement of every false point of f is a true point of f . That
is, for all X ∈ Bn, f(X) = 0 implies f(X) = 1, or equivalently, f(X) ∨ f(X) = 0.

(iii) f is self-dual if and only if every pair of complementary points contains exactly one true point and
one false point of f . That is, for every X ∈ Bn, f(X) = 1 if and only if f(X) = 0.

A dual-minor function f is maximally dual-minor if there does not exist a distinct dual-minor function
g ̸= f such that f ≤ g.

Theorem 2.6. A Boolean function is self-dual if and only if it is maximally dual-minor.

Proof. If f is self-dual and g is a dual-minor function such that f ≤ g, then,

gd ≤ fd = f ≤ g ≤ gd

so gd = f = fd and hence f = g is maximally dual-minor.

Conversely, suppose that f is not self-dual. If f is not dual-minor, we are done. Otherwise, suppose that
f is dual-minor, so there exists a point X∗ = (x∗1, . . . ,x

∗
n) with f(X∗) = 0 and fd(X∗) = 1. Without loss

of generality, suppose that x∗1 = 1, and consider the function g = f ∨ fdx1 (if X∗ = 0, take g = f ∨ fdx1
instead). Clearly, f ≤ g, and f ̸= g since g(X∗) = 1. Moreover, g is dual-minor (actually, self-dual):

gd = fd(f ∨ x1) = fdf ∨ fdx1 = g

so f is not maximally dual-minor. ■

The dual result followss similarly:

Theorem 2.7. A Boolean fuction is self-dual if and only if it is minimally dual-major.

The construction in the proof above can be generalised to yield a simple standand way of associating a
self-dual function to any arbitrary Boolean function.

Given a Boolean function f on Bn, the self-dual extension of f is the function fSD on Bn+1 defined by

fSD(x1, . . . ,xn+1) := f(x1, . . . ,xn)xn+1 ∨ fd(x1, . . . ,xn)xn+1

Lemma 2.8. For every Boolean function f , the function fSD is self-dual.
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Proof. The dual of the fSD is:

(fSD)d =
(
fd(X) ∨ xn+1

)(
f(X) ∨ xn+1

)
= fd(X)f(X) ∨ f(X)xn+1 ∨ fd(X)xn+1 ∨ xn+1xn+1

= f(X)xn+1 ∨ fd(X)xn+1

and hence fSD is self-dual. ■

Theorem 2.9. The mapping (−)SD : f 7→ fSD is a bijection from the set of Boolean functions of n
variables and the set of self-dual functions of n+ 1 variables.

Proof. The mapping (−)SD is injective, since the restriction of fSD to xn+1 = 0 is precisely f . Moreover,
(−)SD has an inverse given by g 7→ g|xn+1=0 for every self-dual function g on Bn:

(g|xn+1=0)
SD = g|xn+1=0xn+1 ∨ (g|xn+1=0)

dxn+1

= g|xn+1=0xn+1 ∨ gd|xn+1=0xn+1

= g|xn+1=0xn+1 ∨ g|xn+1=1xn+1

which is precisely the Shannon expansion of g. ■

When applied to dual-minor functions, the definition of a self-dual extension takes a simpler form:

Theorem 2.10. If f is dual-minor, then fSD = f ∨ fdxn+1

Proof. This holds since for all a,b,x ∈ B, a ≤ b implies ax ∨ bx = a ∨ bx. ■

2.2 Duality Properties of Positive Functions
Recall that a Boolean function f is positive if and only if X ≤ Y implies f(X) ≤ f(Y ) for all X,Y ∈ Bn,
and if and only if f can be represented by a positive expression, i.e. an expression without complemented
variables.

We have also seen that the complete DNF of a positive Boolean function is positive and irredundant,
and since the dual of a positive expression is positive, we have:

Theorem 2.11. A function f is positive if and only if its dual fd is positive.

Recall that for a positive function f , we denote by minT (f) the set of minimal true points of f , and
by maxF (f) the set of maximal false points of f . We have seen that an elementary conjunction CA =∧
i∈A xi is a prime implicant of f if and only if its characteristic vector eA is a minimal true point of f .

This can dualised for maximal false points as follows:

Theorem 2.12. Let f be a positive Boolean function on Bn, let CA =
∧
i∈A be an elementary conjunc-

tion, and let e[n]\A be the characteristic vector of [n] \ A. Then, CA is a prime implicant of fd if and
only if e[n]\A is a maximal false point of f .

Example. Let f = x1 ∨ x2x3 be a positive function. Its dual is given by fd = x1(x2 ∨ x3) = x1x2 ∨ x1x3,
with prime implicants x1x2 and x1x3. So, the maximal false point of f are given by the complementary
indicator vectors 001 and 010. △

We can also characterise dual prime implicants of positive Boolean functions in terms of hypergraphs.

Let H = (V,E) be a hypergraph. Then, a set S ⊆ V of vertices is:

• stable if it does not contain any edge of H;

• a transversal of H if it intersects every edge of H.
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A transversal is furthermore minimal if it is minimal with respect to inclusion of transversals. A set
E ⊆ E of pairwise disjoint edges is a matching.

A hypergraph H = (V,E) is a clutter, Sperner family, or a simple hypergraph if no edge of H is a subset
of any other edge.

For a positive Boolean function f on Bn, we associate the hypergraph Hf =
(
[n],P

)
where P is the

collection of sets P ⊆ [n] of indices such that
∧
i∈P xi is a prime implicant of f . Hf is necessarily a

clutter since the implicants are prime.

Theorem 2.13. Let f =
∨
P∈P

∧
i∈P xi and g =

∨
T∈T

∧
i∈T xi be the complete DNFs of two positive

functions on Bn. Then, the following are equivalent:

(i) g = fd;

(ii) For every partition of [n] into two disjoint sets A and A, there is either a member of P contained
in A, or a member of T containied in A, but not both.

(iii) T is precisely the family of minimal transversals of P.

Example. Again, consider the positive function f = x1∨x2x3 and its dual fd = x1x2∨x1x3. The hyper-
graph Hf has the edge set E =

{
{1},{2,3}

}
, and {1,2} and {1,3} are exactly the minimal transversals

of Hf . △

3 Complexity Measures of Boolean Functions

In this section, let f be a Boolean function on Bn and X = (x1, . . . ,xn) ∈ Bn be a Boolean point.

3.1 Certificate Complexity
A certificate of f on X is a set S ⊆ [n] of indices such that f(Y ) = f(X) for every Boolean point Y with
yi = xi for all i ∈ S. That is, a certificate is a collection of indices sufficient to determine the value of f .

The size of a certificate S is its cardinality |S|. The certificate complexity of f on X, denoted by C(f,X),
is the size of a smallest certificate of f on X. The certificate complexity C(f) of f is the maximum
certificate complexity of f over all Boolean points X ∈ Bn. The 0-certificate complexity C0(f) of f is
the maximum certificate complexity of f over all false points of f , and the 1-certificate complexity C1(f)
of f is the maximum taken over all true points.

C(f) = max
X∈Bn

C(f,X)

C0(f) = max
X∈F (f)

C(f,X)

C1(f) = max
X∈T (f)

C(f,X)

Informally, the certificate complexity of a Boolean function f on Bn at a point X is the codimension
of the largest subcube containing X that defines a constant function; the 0-certificate complexity is
the maximum codimension taken over all 0 points, and the 1-certificate complexity is the maximum
codimension taken over all 1 points.

Example. Consider the function f represented by:
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000 001

011010

100 101

111110

The certificate complexity at 111 is 1, since the largest constant subcube containing 111 is the entire
back face, which is of codimension 1. The certificate complexity at 000 is 2 since the largest constant
subcube is the edge 000-100 of codimension 2. We also have C(f) = C0(f) = C1(f) = 2 since every
point is contained in a constant edge of codimension 2. △

Lemma 3.1. The intersection of any 0-certificate and any 1-certificate is empty.

Proof. Let S0 be a 0-certificate on a false point X and let S1 be a 1-certificate on a true point Y . Suppose
S0 ∩ S1 = ∅, and let Z be a point that coincides with X in all the S0-positions and coincides with Y in
all the S1-positions. Then, Z is simultaneously true and false, which is impossible. So S0 ∩ S1 ̸= ∅. ■

Lemma 3.2. A Boolean function f can be written as a k-DNF (a DNF where every term has at most
k literals) if and only if C1(f) ≤ k. Similarly, a Boolean function f can be written as a k-CNF if and
only if C0(f) ≤ k.

Proof. Let ϕf be a k-DNF representing f . For every true point X of f , there is a term T of ϕf with
T (X) = 1. Observe that the set of indices of literals in T is a certificate of X. Since ϕf is a k-DNF, then
C1(f) ≤ k.

Conversely, let C1(f) ≤ k. For every true point X, a minimal certificate on X corresponts to a maximal
subcube containing X, all of whose points are true. This subcube corresponds to a term with at most k
literals. The disjunction of all such terms taken over all true points then represents f . The proof for C0

is similar. ■

3.2 Sensitivity and Block Sensitivity

Given a set S ⊆ [n] of indices, we denote by XS the Boolean point obtained from X by complementing
all the components xi with i ∈ S. In particular, we abbreviate X{i} to Xi.

The sensitivity s(f,X) of f on X is the number of indices i such that f(X) ̸= f(Xi). The sensitivity
s(f) of f is the maximum sensitivity over all Boolean points X ∈ Bn; the 0-sensitivity s0(f) is the
maximum sensitivity over all false points of f ; and the 1-sensitivity s1(f) is the maximum taken over all
true points:

s(f) = max
X∈Bn

s(f,X)

s0(f) = max
X∈F (f)

s(f,X)

s1(f) = max
X∈T (f)

s(f,X)

In terms of the hypercube, the sensitivity of f at a given vertex is the number of neighbouring vertices
with a different colour.

Example. For the function f from the previous example, the sensitivity of f at 011 is 0 since it has zero
neigbours of differing colours, i.e. complementing any of the bits does not change the value of f . On the
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other hand, the sensitivity of f at 000 is 2, since flipping the second or third bit changes f from 0 to 1,
and flipping the first bit leaves f unchanged. △

The block sensitivity bs(f,X) of f on X is the maximum number of disjoint non-empty sets of indices
B1, . . . ,Bb ⊆ [n] called sensitivity blocks such that f(X) ̸= f(XBi) for all i. The block sensitivity bs(X)
of f is the maximum block sensitivity over all Boolean points X ∈ Bn; the 0-block sensitivity s0(f) is the
maximum block sensitivity over all false points of f ; and the 1-block sensitivity s1(f) is the maximum
taken over all true points:

bs(f) = max
X∈Bn

bs(f,X)

bs0(f) = max
X∈F (f)

bs(f,X)

bs1(f) = max
X∈T (f)

bs(f,X)

Example. For the same function f as in previous example, the sensitivity of f at 100 is 1 since f only
changes if we flip the middle bit, but the block sensitivity of f at 100 is 2, since we have the blocks
B1 = {1,3} and B2 = {2} (yielding 001 and 110, respectively). △

Lemma 3.3. For any Boolean function f ,

s(f) ≤ bs(f) ≤ C(f)

Proof. For any point X ∈ Bn, the sensitivity of f on X coincides with the block sensitivity of f on X if
we do not allow blocks of size more than 1. Therefore, by allowing blocks of arbitrary size, we cannot
decrease the sensitivity and hence s(f) ≤ bs(f).

For each Boolean point X, a certificate on X must contain at least one index from each sensitivity block,
and hence bs(f,X) ≤ C(f,X), so bs(f) ≤ C(f). ■

Theorem 3.4. For any Boolean function f ,

C(f) ≤ s(f)bs(f)

Proof. Consider a point X ∈ Bn. Finst, note that if B is a minimal sensitivity block for X, then
|B| ≤ s(f), since of we flip one of the bits in XB indexed by B, then the function value must flip
from f(XB) to f(X) since B is minimal, so every coordinate in B is sensitive on XB . Therefore,
|B| ≤ s(f,XB) ≤ s(f).

Now, let B1, . . . ,Bb be disjoint minimal blocks that achieve the block sensitivity b = bs(f,X) ≤ bs(f), and
let C =

⋃
iBi. If C is not a certificate for f on X, then there is an index i /∈ C such that f(X) ̸= f(Xi).

But then, {i} is a sensitivity block for f on X disjoint from B1, . . . ,Bb, contradicting that b = bs(f,X).
Thus, C is a certificate for f on X. By the same argument as above, |Bi| ≤ s(f) for all i ∈ [b], and hence
|C| = |

⋃
iBi| ≤ s(f)bs(f).

Since for each X there is a certificate of size at most s(f)bs(f), we have C(f) ≤ s(f)bs(f). s(f)bs(f). ■

It was a long standing open problem, known as the sensitivity conjecture, whether there is a constant c
such that bs(f) ≤ s(f)c for any Boolean function f . The conjecture was eventually resolved positively
in the following:

Theorem 3.5 (Huang). For every Boolean function f ,

bs(f) ≤ s(f)4
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3.3 Decision Tree Complexity
Let t be a decision tree for a Boolean function f . For each point X ∈ Bn, the number of bits of X
examined by t before it is classified is called the cost of t on X, denoted cost(t,X).

Example. Let t be the following decision tree:

x2

x1

x3

0

1

0 1

The cost of t on 000 is 1, since only x2 is examined before 000 is immediate classified with 0, while the
cost of t on 101 is 3, since x2 then x1 must be examined before 101 is classified with 1. △

We denote by T the set of all decision trees that represent f . Then, the decision tree complexity of f is
defined as:

D(f) = min
t∈T

max
X∈Bn

cost(t,X)

Equivalently, the decision tree complexity of f is the depth of an optimal decision tree that represents f .

Theorem 3.6. For any Boolean function f ,

bs(f) ≤ D(f)

Proof. Consider a point X ∈ Bn with maximally many sensitivity blocks B1, . . . ,Bbs(f). To evaluate f
on X, a decision tree must examine at least one index from each block Bi, since other wise we could
flip that block without the tree being able to detect this, i.e. the tree would be unable to distinguish
f(X) ̸= f(XBi). Thus, the tree must make at least bs(f)-many queries on X. ■

Theorem 3.7. For any Boolean function f ,

D(f) ≤ C1(f)C0(f) ≤ C(f)2

Proof. Let k = C1(f) and ℓ = C0(f). Using Lemma 3.2, let D be a k-DNF representation of f and C be
an ℓ-DNF representation of f . Take a term T in D, and examine the values of (the at most k) variables
in T . Once the values of the variables in T are fixed, we are left with a function f ′ with fewer variables.
Since every clause in C has a variable in common with T by Lemma 3.1, after fixing the values of the
variables in T , C transforms into an (ℓ − 1)-CNF C ′ representing f ′. By induction and Lemma 3.2,
D(f ′) ≤ C1(f

′)C0(f
′) ≤ k(ℓ− 1), and hence D(f) ≤ k + k(ℓ− 1) = kℓ = C1(f)C0(f). ■

4 Functional Completeness

So far, we have considered the notion of a Boolean expression as compositions defined inductively over
the set of three functions; namely conjunction, disjunction, and negation. We have also considered the
notion of a Zhegalkin polynomials as expressions defined inductively over the set of functions {0,1,⊕ ,∧}.

We now consider expressions defined inductively over arbitrary sets of function, and not necessarily of
two variables.

A set of Boolean functions {f1,f2, . . .} is (functionally) complete if any Boolean function can be written
as an expression over the functions in the set.
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The set of all Boolean functions is trivially complete, but we have also seen that the sets {x,x1∧x2,x1∨x2}
and {0,1,x1⊕x2,x1∧x2} are complete. Obviously, not every set of functions is complete, as, for instance,
the set {0,1} is not complete. The following theorem allows us to reduce the question of completeness
of some sets of Boolean functions to the same question for other sets of Boolean functions.

Theorem 4.1. Suppose we have two sets of Boolean functions F = {f1,f2, . . .} and G = {g1,g2, . . .}. If
the set F is complete and every function in F can be represented as an expression over the functions in
G, then G is also complete.

Proof. Let h be a Boolean function represented as an expression C[f1,f2, . . .] in F . By assumption,
every function fi in F can be represented as an expression Ci[g1,g2, . . .] over the functions in G. Then,
C[C1,C2, . . .] expresses h over the functions in G, so G is complete. ■

Example.

• The set {x,x1 ∧ x2} is complete, since x1 ∨ x2 = x1 ∧ x2, and {x,x1 ∧ x2,x1 ∨ x2} is complete.
Dually, the set {x,x1 ∨ x2} is complete.

• The set {x1 ↑ x2} is famously complete, enabling most modern computer hardware to be built
from only NAND gates. To see this, observe that x ↑ x = x and (x1 ↑ x2) ↑ (x1 ↑ x2) = x1 ∧ x2.
Dually, {x1 ↓ x2} is also complete.

△

Let F be a set of Boolean functions. The closure [F ] of F is the set of all Boolean functions that can be
represented as expressions over the functions in F .

Theorem 4.2. For any sets F ,F1,F2 of functions,

• F ⊆ [F ];

• [[F ]] = [F ];

• If F1 ⊆ F2, then [F1] ⊆ [F2];

• [F1] ∪ [F2] ⊆ [F1 ∪ F2].

A set F of functions is (functionally) closed if F = [F ].

Example. The set of all Boolean functions is closed, while the set {1,x1 ⊕ x2} is not. Conversely, the set
of all linear functions is closed, since a linear expression of linear expressions is linear. △

We can also characterise completeness in terms of closedness: a set F is complete if and only if [F ]
contains the set of all Boolean functions.

4.1 Important Closed Classes

4.1.1 Functions Preserving Constants

We denote by T0 the class of Boolean functions that map the constant zero vector 000 . . . 0 to 0. That
is, the functions f(x1, . . . ,xn) such that

f(0,0, . . . ,0) = 0

Example. The functions 0, x, x1 ∧ x2, x1 ∨ x2, and x1 ⊕ x2 belong to T0, while the functions 1 and x do
not. △

Lemma 4.3. The class T0 contains 22
n−1 functions on Bn.
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Proof. We fix the value of the function at 0, and there are 2n − 1 other Boolean points, each of which
can take 2 values. ■

Lemma 4.4. The class T0 is closed.

Proof. For any functions f,f1, . . . ,fn ∈ T0, the function F = f(f1, . . . ,fn) belongs to T0:

F (0, . . . ,0) = f
(
f1(0, . . . ,0), . . . ,fn(0, . . . ,0)

)
= f(0, . . . ,0)

= 0

so F preserves 0. ■

Similarly, we denote by T1 the class of Boolean functions that send the constant one vector 111 . . . 1 to
1. That is, the functions f(x1, . . . ,xn) such that

f(1,1, . . . ,1) = 1

Example. The functions 1, x, x1 ∧ x2, and x1 ∨ x2, belong to T1, while the functions 0, x do not. △

Since T1 consists of functions dual to the functions of T0, all theorems immediately dualise to T1:

Corollary 4.4.1. The class T1 contains 22
n−1 functions on Bn.

Corollary 4.4.2. The class T1 is closed.

4.1.2 Self-Dual Boolean Functions

We denote by S the class of all self-dual Boolean functions.

Example. x and x are self-dual functions. △

Lemma 4.5. The class S contains 22
n−1

Boolean functions on Bn.

Proof. Self-dual Boolan functions must take opposite values on complementary Boolean points, so a
self-dual Boolean function need only be defined on half the Boolean points. ■

Lemma 4.6. The class S is closed.

Proof. For any functions f,f1, . . . ,fn ∈ S, the function F = f(f1, . . . ,fn) belongs to S:

F d = fd(fd1 , . . . ,f
d
n)

= f(f1, . . . ,fn)

= F

so F is self-dual. ■

Lemma 4.7. If f does not belong to S, then by substituting functions x and x, it can be transformed
into a constant 0 or 1.

Proof. Since f is not self-dual, there exists a point X ∈ Bn such that f(X) = f(X). For each i, define
the functions

ϕi(x) =

{
x xi = 1

x xi = 0
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and consider the function
F (x) = f

(
ϕ1(x), . . . ,ϕn(x)

)
That is, we complement the components corresponding to the non-zero entries of X. Then,

F (0) = f
(
ϕ1(0), . . . ,ϕn(0)

)
= f(x1, . . . ,xn)

= f(x1, . . . ,xn)

= f
(
ϕ1(1), . . . ,ϕn(1)

)
= F (1)

so F is a constant. ■

4.1.3 Positive Functions

Recall that a Boolean function f is positive if any of the following equivalent conditions hold:

• The restrictions in every variable xi satisfy f |xi=0 ≤ f |xi=1;

• Whenever X ≤ Y , f(X) ≤ f(Y );

• f has a DNF representation without complemented variables.

We denote by M the class of positive Boolean functions.

Example. 0, 1, x, x1 ∧ x2, and x1 ∨ x2 are positive functions. △

Lemma 4.8. The class M is closed.

Proof. For any functions f,f1, . . . ,fn ∈ M , let F = f(f1, . . . ,fn). Denote by pi the number of variables
of the function fi, and by m the number of variables of F , and suppose without loss of generality that
F depends only on the variables that appear in the function f1, . . . ,fn.

For a Boolean point X ∈ Bn, denote by Xi the projection of X into Bpi along the variables corresponding
to fi. Note that if X ≤ Y , then the projections also satisfy Xi ≤ Y i. Since the functions f1, . . . ,fn are
positive, fi(Xi) ≤ fi(Y

i), so (
f1(X

1), . . . ,fn(X
n)
)
≤
(
f1(Y

1), . . . ,fn(Y
n)
)

and since f is positive, we have

F (X) = f
(
f1(X

1), . . . ,fn(X
n)
)
≤ f

(
f1(Y

1), . . . ,fn(Y
n)
)
= F (Y )

so F is positive. ■

Let us call two Boolean points X,Y ∈ Bn neighbouring if they differ in precisely one coordinate.

Lemma 4.9. If f does not belong to M , then by substituting the constants 0 and 1 and the function x,
it can be transformed into the function x.

Proof. First, we claim that there exist two neighbouring points X∗,Y ∗ ∈ Bn such that X∗ ≤ Y ∗, and
f(X∗) > f(Y ∗). Indeed, since f is not positive, there exist two Boolean points X ′ and Y ′ such that
X ′ ≤ Y ′ and f(X ′) > f(Y ′), and if X ′ and Y ′ are not neighbours and differ in t > 1 coordinates, then
there is a sequence of Boolean points

X ′ = Z1 ≤ Z2 ≤ · · · ≤ Zt = Y ′

where Zi+1 is obtained from Zi by flipping the first bit of Zi that disagrees with Y , i.e. Zi+1 and Zi

are neighbours. Since f(X ′) > f(Y ′), there is a pair of consecutive points X∗ and Y ∗ in the sequence
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above such that X∗ ≤ Y ∗, and f(X∗) > f(Y ∗). Suppose that X∗ = Xi, so X∗ and Y ∗ differ in the ith
coordinate, and consider the function

ϕ(x) = f(x∗1, . . . ,x
∗
i1 ,x,x

∗
i+1, . . . ,x

∗
n)

Then,

ϕ(0) = f(x∗1, . . . ,x
∗
i−1,0,x

∗
i+1, . . . ,x

∗
n)

= f(X∗)

> f(Y ∗)

= f(x∗1, . . . ,x
∗
i−1,1,x

∗
i+1, . . . ,x

∗
n)

= ϕ(1)

so ϕ(0) = 1 and ϕ(1) = 0, i.e. (x) = x. ■

4.1.4 Linear Functions

Recall that a Boolean function f is linear if it can be expressed in the form

f(x1, . . . ,xn) = c0 ⊕
n⊕
i=1

cnxn

That is, it is a GL(2)-affine combination of variables.

We denote the class of linear Boolean functions by L.

Example. 0, 1, x, x = x⊕ 1, and x1 ⊕ x2 are linear functions, but x1 ∧ x2 and x1 ∨ x2 are not. △

Lemma 4.10. If f does not belong to L, then by substituting the constants 0 and 1 and the functions x
and x, and possibly by negating f , it can be transformed into the function x1 ∧ x2.

Proof. Let
f(x1, . . . ,xn) =

⊕
A∈P

(
[n]
) c(A)∏

i∈A
xi

be a Zhegalkin polynomial for f . Since f is not linear, there is a non-zero term in this polynomial of at
least quadratic order, involving at least, say, x1 and x2. Then, the polynomial can be transformed as⊕

A∈P
(
[n]
) c(A)∏

i∈A
xi = x1x2f1(x3, . . . ,xn)⊕ x1f2(x3, . . . ,xn)⊕ x2f3(x3, . . . ,xn)⊕ f4(x3, . . . ,xn)

where f1 ̸= 0n−2, since the polynomial is unique. That is, there exist (a3, . . . ,an) ∈ Bn−2 such that
f1(a3, . . . ,an) = 1. Now, consider the function

f(x1,x2) = f(x1,x2,a3, . . . ,an) = x1x2 ⊕ αx1 ⊕ βx2 ⊕ γ

for some coefficients α,β,γ ∈ {0,1}. Now, let ψ(x1,x2) be the function defined as

ψ(x1,x2) = ϕ(x1 ⊕ β,x2 ⊕ α)⊕ αβ ⊕ γ

Then,

ϕ(x1 ⊕ β,x2 ⊕ α)⊕ αβ ⊕ γ = (x1 ⊕ β)(x2 ⊕ α)⊕ α(x1 ⊕ β)⊕ β(x2 ⊕ α)⊕ γ ⊕ αβ ⊕ γ

= x1x2 ⊕ αx1 ⊕ βx2 ⊕ αβ ⊕ αx1 ⊕ αβ ⊕ βx2 ⊕ αβ ⊕ γ ⊕ αβ ⊕ γ

= x1x2

so α = β = γ = 0. To complete the proof it suffices to observe that x⊕ 0 = x and x⊕ 1 = x. ■
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4.2 Post’s Theorem
Theorem 4.11 (Post). A set F = {f1,f2, . . .} of Boolean functions is complete if and only if it is not a
subset of any of the following five closed classes: T0, T1, S, M , L.

Proof. Suppose F is complete, so [F ] is the class of all Boolean functions. Now, suppose for a contra-
diction that F ⊆ X for X being one of the forbidden classes T0, T1, S, M , L. But then, [F ] ⊆ [X] = X,
which is a contradiction, since none of the five classes contain all Boolean functions.

Conversely, suppose that F is not contained in any of the forbidden classes. Then, F contains a subset
F ′ = {f0,f1,fs,fm,fℓ} of 5 (not necessarily distinct) functions witnessing this non-containment, i.e.
f0 /∈ T0, f1 /∈ T1, fs /∈ S, fm /∈ M , fℓ /∈ L. Without loss of generality, suppose that these functions all
depend on the same set of variables x1, . . . ,xn. We claim that F ′ is complete.

First, the constants 0 and 1 can be obtained from f1, f0, and fs. If f0(1, . . . ,1) = 1, then ϕ(x) =
f0(x, . . . ,x) is the constant 1, and the function f1

(
ϕ(x), . . . ϕ(x)

)
= f1(1, . . . ,1) = 0 is the constant 0

function. Otherwise, if f0(1, . . . ,1) = 0, then ϕ(x) = f0(x, . . . ,x) = x, and hence by Lemma 4.7 we can
use ϕ and fs to obtain a constant. The second constant can then be obtained from the first by using ϕ.

Now, we can apply Lemma 4.9 using the two constants 0 and 1 and the function fm to obtain the function
x.

Finally, we can apply Lemma 4.10 using the two constants 0 and 1, and the functions x and fℓ to constuct
the function x1 ∧ x2.

Since {x,x1 ∧ x2} is complete, the set F ′, and hence F , is also complete. ■

Corollary 4.11.1. Every closed set of Boolean functions, different from the set of all Boolean functios
is contained in one of the classes T0, T1, S, M , L.

A set F of Boolean functions is precomplete if F is not complete, but for any Boolean function f /∈ F ,
the set F ∪ {f} is complete. It follows that any precomplete set is closed.

Corollary 4.11.2. There exist precisely 5 precomplete sets of Boolean functions: T0, T1, S, M , L.

Theorem 4.12. Every complete set F of Boolean functions contains a complete subset of at most 4
functions.

Proof. We have seen in the proof of Post’s theorem that F contains a complete subset of at most 5
functions. Moreover, we have seen that the function f0 /∈ T0 does not belong either to S (if f0(0, . . . ,0) =
f0(1, . . . ,1) = 1) or to T1∪M (if f0(0, . . . ,0) = 1, f0(1, . . . ,1) = 0). Therefore, either the set {f0,f1,fm,fℓ}
or the set {f0,fs,fℓ} is complete. ■

This bound is sharp, since the set of functions

{f1 = x1x2, f2 = 0, f3 = 1, f4 = x1 ⊕ x2 ⊕ x3}

satisfies f3 /∈ T0, f2 /∈ S, f4 /∈M , and f1 /∈ L, and is thus complete, but any proper subset is incomplete,
since {f2,f3,f4} ⊆ L, {f1,f3,f4} ⊆ T1, {f1,f2,f4} ⊆ T0, and {f1,f2f3} ⊆M .

A subset F ′ of a closed set F is complete in F if [F ′] = F . That is, every function in F can be represented
as an expression over the functions in F ′. A basis of F is a minimal subset F ′ complete in F .

Example. From the previous example,

{f1 = x1x2, f2 = 0, f3 = 1, f4 = x1 ⊕ x2 ⊕ x3}

is a basis for the set of all Boolean functions.

It is also possible to show that the set {0,1,x1x2,x1 ∨ x2} is a basis of M . △
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In addition to the main theorem characterising functionally complete sets, Post also proved the following
results:

Theorem 4.13. Every closed class of Boolean functions has a finite basis.

Theorem 4.14. The set of all closed classes of Boolean functions is countable.

We observe that the first of these two theorems implies the second one. However, originally Post proved
the second theorem before the first.

5 Quadratic Functions

A DNF

ϕ(x1, . . . ,xn) =

m∨
k=1

∧
i∈Pk

xi
∧
j∈Nk

xj

is quadratic if althe its terms are quadratic. That is, if they are conjunctions of at most two literals.
A term is called linear or purely quadratic if it has exactly one or exactly two literals, respectively.
Similarly, a CNF is quadratic if all its clauses are disjunctions of at most two literals.

A Boolean function f is quadratic if it admits a quadratic DNF representation. The function f is dually
quadratic if it admits a quadratic CNF representation. This is equivalent to fd being quadratic.

A quadratic Boolean function f is purely quadratic if it is not constant and has no linear prime implicant.
Equivalently, f is purely quadratic if no linear term appears in any DNF of f .

The next result follows immediately from the definition.

Lemma 5.1. If f is purely quadratic, then in every quadratic DNF of f , every term is a prime implicant.

Note that it is possible for a quadratic function to be represented by a DNF of higher degree.

Example. The function

f = x1x2x3x4 ∨ x1x2x3x4 ∨ x1x2x3x4 ∨ x1x2x3 ∨ x2x3x4 ∨ x1x3 ∨ x2x4

is quadratic, since it also admits the DNF

f = x1x2 ∨ x1x3 ∨ x2x4 ∨ x3x4

△

5.1 Quadratic Boolean Functions and Graphs
There are many connections between certain classes of quadratic functions and graphs.

Given any undirected graph G = (V,E), its stability function is the quadratic Boolean function given by

fG =
∨
ij∈E

xixj

Note that the prime implicants of f are precisely the terms xixj of this DNF, which is also the unique
irredundant DNF of f . It follows that this mapping from undirected graphs to positive purely quadratic
Boolean functions is a a bijection.
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5.1.1 The Matched Graph

Another graph that can be conveniently associated with a quadratic DNF ϕ is the matched graph Gϕ.
This undirected graph has vertex set {x1, . . . ,xn,x1, . . . ,xn} with edges given by(

(xi,xi) : i ∈ [n]
)
∪
(
(α,β) : αβ is a term of ϕ

)
That is, start with the bipartite graph with parts {x1, . . . ,xn} and {x1, . . . ,xn} with complementary
vertices matched, then connect vertices that are paired up in terms. Note that if ϕ contains linear terms,
a loop (α,α) is added for each such term α.

Example. The matched graph associated to the DNF

ϕ = x1x2 ∨ x1x2 ∨ x1x4 ∨ x2x3 ∨ x2x4 ∨ x3x4

is given by:
x1 x1

x2 x2

x3 x3

x4 x4

△

The edges of Gϕ are classified as:

• positive, (xi,xj);

• negative, (xi,xj);

• mixed, (xi,xj);

• null, (xi,xi).

Example. The positive edges are the edges within the left part; the negative edges are the edges within
the right part; the mixed edges are the non-horizontal edges between the two parts; and the null edges
are the horizontal edges. △

The consistency of the quadratic Boolean equation ϕ = 0 has a nice graph-theoretic counterpart for Gϕ
as follows.

Let µ(G) be the maximum cardinality of a matching on G, and τ(G) be the minimum cardinality of a
vertex cover in G. Note that

τ(G) ≤ τ(G)

since we need at least one vertex in a minimum vertex cover for every edge in a maximum matching.

The graph G is said to have the Kőnig–Egerváry (KE) property if this the above expression is in fact an
equality.
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Theorem 5.2. The quadratic Boolean equation ϕ = 0 in n variables is consistent if and only if the
matched graph Gϕ has the Kőnig–Egerváry property.

Proof. The null edges form a maximum matching in Gϕ, so Gϕ has the KE property if and only if there
is a vertex cover C in Gϕ with cardinality n.

Suppose first that Gϕ has the KE property, and let C be a vertex cover with cardinality n. As every null
edge has exactly one endpoint in C, we define the Boolean point Z = (z1, . . . ,zn) ∈ Bn as zi = 0 if and
only if xi ∈ C, and zi = 1 otherwise. Since C is a vertex cover, Z is a solution of the equation ϕ = 0.

Conversely, let Z be a solution of ϕ = 0, and let C be the set of vertices xi for which zi = 0 and xi for
which xi = 1. Then, C is a vertex cover of cardinality n, and so Gϕ has the KE property. ■

That is, we can find a solution to ϕ = 0 by finding a vertex cover with cardinality n, and taking the
complementary indicator vector of the vertex cover.

Example. In the matched graph from the previous example, {x1,x2,x3,x4} is a vertex cover of cardinality
4 = n, so ϕ = 0 is consistent, and in particular, the Boolean point 1010 is a solution. △

5.1.2 The Implication Graph

As an alternative to the matched graph Gϕ, we can also associate with a quadratic DNF ϕ a directed
graph Dϕ called the implication graph of ϕ, and again characterise the consistency of ϕ = 0 in terms of
a simple property of this graph.

The definition of an implication graph arises from the observation that the relation αβ = 0 is equivalent
to the implication α⇒ β, as well as to the implication β ⇒ α.

As in the matched graphGϕ, the vertices of the implication graphDϕ has vertex set {x1, . . . ,xn,x1, . . . ,xn}.
For each quadratic term αβ, we add the arcs (α,β) and (β,α). Either of these arcs is called the mirror
arc of the other, and the simultaneous presence of these two arcs is called the mirror property (MP).
Then, for each linear term α, we add the single arc (α,α).

Example. The graph associated with the DNF

ϕ = x1x2 ∨ x1x2 ∨ x1x4 ∨ x2x3 ∨ x2x4 ∨ x3x4

is given by:
x1 x1

x2 x2

x3 x3

x4 x4

△
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Recall that a strongly connected component, or just strong component, of a graph G = (V,E) is a maximal
subset C ⊆ V of vertices such that every two vertices of C are connected by a path in C in both directions.
The strong components of G form a partition of V .

By replacing each strong component of an implication graph Dϕ by a single vertex, we obtain an acyclic
digraph D̂ϕ called the condensed implication graph of ϕ. Notice that, because of the mirror propertly,
the strong components of Dϕ come in pairs: if C is a strong component of Dϕ, then the set C of the
negation of all literals in C is also a strong component.

Example. The strong components of the implication graph in the previous example are {x1, x2}, {x2,x1},
and the singletons of every other vertex. △

Lemma 5.3. An assignment of binary values to the vertices of Dϕ is a solution of ϕ = 0 if and only if

(i) xi and xi receive complementary values;

(ii) no arc (and hence no direct path) connects from a 1-vertex to a 0-vertex.

Theorem 5.4. The quadratic Boolean equation ϕ = 0 in n variables is consistent if and only if no strongly
connected component of the implication graph Dϕ simultaneously contains a literal and its negation.

Proof. ■

Example. The strong components found in the previous example are either {x1, x2}, {x2,x1}, or single-
tons, none of which include a literal and its negation, so ϕ is consistent (agreeing with the previous result
from the matched graph). △

The implication graph not only allows us to determine the consistency of the corresponding quadratic
Boolean equation, but also, if it is consistent, to infer further properties of its solutions.

A literal α is forced to value a for a ∈ {0,1} if either ϕ = 0 is inconsistent, or if α takes the value a in all
possible solutions.

Theorem 5.5. Suppose that ϕ = 0 is consistent. Then, the literal α is forced to 0 if and only if there is
a directed path from α to α in Dϕ.

Proof. ■

Example. In the previous example, x1 is not forced to 0, since there is no directed path from x1 to x1 in
Dϕ. Conversely, x2 is forced to 0 since there is a directed path x2,x4,x3,x2 from x2 to x2. △

Theorem 5.6. Let α be a literal not forced to 0 and β be a literal not forced to 1. Then, the relation
α ≤ β holds in all solutions of ϕ = 0 if and only if there is a directed path from α to β in Dϕ.

Proof. ■

Two literals α and β are said to be twins if α = β in every solution to ϕ = 0.

Corollary 5.6.1. Suppose that two literals α and β are not forced. Then, they are twins if and only if
they are in the same strong component of Dϕ.
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5.1.3 More Relations Between Quadratic Equations and Graphs

Recall that an independent set in a graph G = (V,E) is a set of vertices such that no two are adjacent,
and a clique is a set of vertices such that every pair are adjacent, i.e. induces a complete subgraph. A
graph is bipartite if its vertex set V can be partitioned into two independent sets V = L⊔R, and is split
if V can be partitioned into an independent set and a clique V = I ⊔ C.

Given a graph G = (V,E), introduce a variable xi for each vertex i ∈ V . Then, G is bipartite if and only
if the quadratic Boolean equation ∨

ij∈E
(xixj ∨ xixj) = 0

is consistent. Also, G is split if and only if the quadratic Boolean equation∨
ij∈E

xixj ∨
∨
ij /∈E

xixj ∨ xixj = 0

is consistent.

6 Horn Functions

An elementary conjunction is a Horn term if it contains at most one negated variable. A Horn term is
pure Horn if it contains precisely one negated variable, and is positive otherwise. A DNF is Horn if all
of its terms are Horn, and a Boolean fnction is a Horn function if it can be represented by a Horn DNF.

Lemma 6.1. The consensus of two Horn terms is Horn. Specifically, the consensus of two pure Horn
terms is pure Horn, while the consensus of a positive and a pure Horn term is positive.

Proof. Let xC and xD be two Horn terms that have a consensus. Then, D must only contain positive
literals, and C can contain at most one negated variable, which cannot belong to A. Hence their consensus
CD contains at most one negated variable, i.e. is Horn, and is positive (respectively, pure Horn) if xC
is positive (respectively, pure Horn). ■

Lemma 6.2. All prime implicants of a Horn function are Horn.

Proof. Let f be a Horn function and ϕ be a (pure) Horn DNF representing f . Then, we may compute
all prime implicants of f by applying the consensus procedure to ϕ. Thus, all prime implicants of f may
be obtained by a sequence of consensus operations, starting with the (pure) Horn terms in ϕ, and by the
previous lemma, consensus operations preserve (pure) Horn terms, so every prime implicant must also
be (pure) Horn. ■

Theorem 6.3. A Boolean function is Horn if and only if the set of its false points is closed under
conjunction.

Proof. ■

Corollary 6.3.1. A Boolean function f on Bn is Horn if and only if f(X ∧ Y ) ≤ f(X) ∨ f(Y ) for all
X,Y ∈ Bn.

Proof. Suppose f(X ∧ Y ) ≤ f(X) ∨ f(Y ) for all X,Y ∈ Bn. Then, f(X) ∨ f(Y ) = 0 if and only if X
and Y are false points of f , and f(X ∨ Y ) ≤ f(X) ∨ f(Y ) = 0, so X ∨ Y is also a false point of f , so
F (f) is closed under conjunction, and hence f is Horn. The same argument in reverse proves the reverse
implication. ■
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6.1 Horn Boolean Functions and the Union-Closed Sets Conjecture
Let (U,F) be a set system. The family F is union-closed if for any two sets A,B ∈ F , we have A∪B ∈ F .
The following conjecture is known as the union-closed sets conjecture or Frankl’s conjecture.

Conjecture 6.1. Any finite union-closed family F ̸= {∅} of finite sets contains an element that belongs
to at least of half the sets in the family.

The family F is intersection-closed if for any two sets A,B ∈ F , we have A ∩ B ∈ F . Without loss
of generality, suppose that every element of the universe appears in at least one set of F . Then, F is
intersection closed if and only if the family of relative complements {U \A : A ∈ F} is union-closed. So,
Frankl’s conjecture can be equivalently stated as:

Conjecture 6.2. Any finite intersection-closed family of at least two finites sets contains an element
that belongs to at most half of the sets in the family.

The conjecture admits many other equivalent formulations, in particular, in the language of lattice and
graph theory.

In spite of its simple formulation, the conjecture remains open and has been verified only for special
classes of sets, lattices, or graphs. Here, we develop a Boolean approach to the conjecture and verify it
for submodular functions.

Let F be an intersection-closed family over the universe U = x1, . . . ,xn and let A ∈ F . We represent A
by its characteristic vector cA, i.e. a binary vector with 1 in the ith coordinate if xi ∈ A, and 0 otherwise.
In doing so, we can interpret F as a Boolean function f over the variables x1, . . . ,xn whose false points
are precisely the elements of F . Then, F being intersection-closed is equivalent to the false points of f
being closed under conjunction, i.e. f is Horn.

We say that a variable xi belongs to a Boolean point X if the ith component of X is 1. Frankl’s conjecture
can then be restated as follows:

Conjecture 6.3. Any Horn Boolean function f with at least two false points contains a variable that
belongs to at most half of the false point of f .

Given a Horn Boolean function f , we associate to its set of true points T = T (f) a set system T over
the same universe U such that A ⊆ U is an element of T if and only if the characteristic vector cA is a
true point of f .

Note that a variable belongs to at most half the false points if and only if it belongs to at least half
of the true points of the function, which suggests that the relation between F and T is similar to
the relation between intersection-closed and union-closed families. However, in general, T is neither
intersection-closed nor union-closed.

In the terminology of set systems, an element that appears in at least half the subsets is abundant, and
an element that appears in at most half the subsets is rare. In the terminology of Boolean functions,
every variable that is abundant for true points is rare for false points, and vice versa. In the following
results, we will frequently switch between the two roles of the same variable. To avoid ambiguities, we
will call a variable abundant in false points, or equivalently, rare in true points, good. In this terminology,
Frankl’s theorem can be restated as:

Conjecture 6.4. Any Horn Boolean function f with at least two false points contains good variable.

We will say that a Horn Boolean function satisfies Frankl’s conjecture if it satisfies this last characteri-
sation of the conjecture. We will now verify Frankl’s conjecture for a certain subclass of Horn functions.

A Boolean function f(X) on Bn is co-Horn if g(X) := f(X) is Horn. In other words, a function is
co-Horn if it admits a DNF representation in which every term contains at most one positive literal.

Previous theorems about Horn functions then transform to results about co-Horn functions as follows:
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Theorem 6.4. A Boolean function is co-Horn if and only if the set of its false points is closed under
disjunction.

Corollary 6.4.1. A Boolean function f on Bn is co-Horn if and only if f(X ∨ Y ) ≤ f(X) ∨ f(Y ) for
all X,Y ∈ Bn.

A Boolean function f(X) is submodular if f(X ∨ Y ) ∨ f(X ∧ Y ) ≤ f(X) ∨ f(Y ).

Theorem 6.5. A Boolean function is submodular if and only if it is both Horn and co-Horn. All prime
implicants of a submodular function are either linear or quadratic pure Horn.

Proof. Since A,B ≤ A ∨ B holds for any Boolean points A,B, f(X ∨ Y ) ∨ f(X ∧ Y ) ≤ f(X) ∨ f(Y ) (f
is submodular) if and only if f(X ∧ Y ) ≤ f(X) ∨ f(Y ) (f is Horn) and f(X ∨ Y ) ≤ f(X) ∨ f(Y ) (f is
co-Horn).

So, if f is submodular, all prime implicants of f are both Horn and co-Horn, so each contains at most
one positive and one negative literal, and is thus is either a single variable xi or its complement xi (i.e.
is linear), or is of the form xixj (i.e. is quadratic pure Horn). ■

Lemma 6.6. Let f be a Horn function represented by a Horn DNF Df . If a variable xi of f does not
appear in Df negatively, then xi is a good variable for f .

Proof. If f |xi=0 does not have true points, then the number of false points of xi containing xi is at most
equal to the number of false points that do not contain xi (i.e. if f is identically zero, and is less in any
other case), so xi is a good variable for f .

Conversely, let X be a true point of f |xi=0, i.e. a true point of f with xi = 0, and let t be a term of
Df with t(X) = 1. Since xi does not appear negatively in t and xi = 0, xi must not appear in t. So,
changing the xi to 1 in X yields a true point of f with xi = 1. This injects the set of true points of
f |xi=0 into the set of true points of f |xi=1, so xi belongs to at least half of the true points of f and is
hence good. ■

Theorem 6.7. Submodular Boolean functions satisfy Frankl’s conjecture.

Proof. ■

7 Threshold Functions

A Boolean function f on Bn is called a threshold or linearly separable function if there exist coefficients
w1, . . . ,wn ∈ R called weights and a threshold value t ∈ R such that

f(x1, . . . ,xn) = 0 ⇐⇒
n∑
i=1

wixi ≤ t

The hyperplane {X ∈ Rn :
∑n
i=1 wixi ≤ t} is called a separator of f , and the tuple of weights and

threshold value (w1, . . . ,wn,t) is called a separating structure of f . We say that the separator and the
separating structure represent f .

Geometrically, a function is threshold precisely if the set of its true points can be separated from the set
of its false points by a hyperplane (where the hyperplane may contain false points).

Example. The function f(x,y,z) = xy∨z is a threshold function with separator
{
(x,y,z) ∈ R3 : x−y+2z =

0
}

and structure (1,− 1,2,0).
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000 001

011010

100 101

111110

Note that the separator of a threshold function is not unique, and in fact f in this case admits infinitely
many separators.

The function f(x,y) = xy ∨ x y is not a threshold function:

00 01

1110

The convex hulls of T (f) and F (f) intersect, so they cannot be separated by the hyperplane separation
theorem. △

Theorem 7.1. Every threshold function has an integral separating structure. That is, a separating
structure (w1, . . . ,wn,t) with w1, . . . ,wn,t ∈ Z.

7.1 Basic Properties of Threshold Functions
Theorem 7.2. Elementary conjunctions and elementary disjunctions represent threshold functions.

Proof. Given an elementary conjunction CAB =
∧
i∈A xi

∧
j∈B xj , the equation

∑
i∈A xi +

∑
j∈B(1 −

xj) = |A| − |B| − 1 defines a separator for CAB . Similarly, given an elementary disjunction DAB =∨
i∈A xi

∨
j∈B xj , the equation

∑
i∈A xi +

∑
j∈B(1− xj) = 0 defines a separator for DAB ■

Geometrically, elementary conjunctions define a single true point of the hypercube, and elementary
disjunctions define single false points, which can both clearly be separated from the opposite kind of
points.

Another important property of thresfold functions is that they constitute a class of functions closed
under restriction.

Theorem 7.3. If f is a threshold function on Bn with separating structure (w1, . . . ,wn,t), then fxi=1 is
a threshold function on Bn−1 with separating structure (w1, . . . ,ŵk . . . ,wn,t−wi), and fxi=0 is a threshold
function on Bn−1 with separating structure (w1, . . . ,ŵi . . . ,wn,t).

Proof. Since f is threshold, f |xi=1(x1, . . . ,x̂i, . . . ,xn) = f(x1, . . . ,1, . . . ,xn) = 0 if and only if∑
j ̸=i

wjxj + wi ≤ t

∑
j ̸=i

wjxj ≤ t− wi
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so f |xi=1 is threshold with separating structure (w1, . . . ,ŵi . . . ,wn,t− wi).

Similarly, f |xi=0(x1, . . . ,x̂i, . . . ,xn) = f(x1, . . . ,0, . . . ,xn) = 0 if and only if∑
j ̸=i

wjxj ≤ t

so f |xi=0 is threshold with separating structure (w1, . . . ,ŵi . . . ,wn,t). ■

Our next observation is that every threshold function is monotone, and hence can be turned into a
positive function by “switching” some of its variables. Moreover, the negativity and positivity of each
variable is captured in the sign of the corresponding weight.

Theorem 7.4. Every threshold function is monotone. More precisely, if f is a threshold function with
separating structure (w1, . . . ,wh,t), then for each i ∈ [n],

(i) If wi = 0, then f does not depend on xi;

(ii) If xi does not depend on xi, then (x1, . . . ,wi−1,0,wi+1, . . . ,xn,t) is a separating structure of f ;

(iii) If wi > 0, then f is positive in xi;

(iv) If f is positive in xi and f depends on xi, then wi > 0 ;

(v) If wi < 0, then f is negative in xi;

(vi) If f is negative in xi and f depends on xi, then wi < 0 ;

(vii) If wj ≥ 0 for j = 1, . . . ,k, and wj < 0 for j = k + 1, . . . ,n, then the function

g(x1, . . . ,xn) := f(x1, . . . ,xk,xk+1, . . . ,xn)

is a positive threshold function with separating structurew1, . . . ,wk,− wk+1, . . . ,− wn,t−
n∑

j=k+1

wj


Example. As seen previously, the function f(x,y,z) = xy ∨ z is a threshold function with separating
structure (1,− 1,2,0). The associated function g(x,y,z) = xy ∨ z with all negations removed is then also
a threshold function with separating structure (1,2,3,2). △

We emphasise that a variably may have a non-zero weight in the separating structure of a threshold
function even if the function dos not depend on the variable.

Example. The function f(x,y,z,w) = xy ∨ z is a threshold function with separating structure (2,4,6,1,5).
The variable w is inessential, but has positive weight in this separating structure. △

For three or fewer variables, monotonicity is equivalent to thresholdness. However, this fails in general
for functions of more variables.

Example. The functions

f(x,y,z,w) = xy ∨ zw
g(x,y,z,w) = xy ∨ yz ∨ zw
h(x,y,z,w) = xy ∨ yz ∨ zw ∨ xw

are positive but not threshold. Up to permutation of their variables, these are the only positive non-
threshold functions of four variables. △
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Theorem 7.5. If f is a threshold function on Bn and (w1, . . . ,wn,t) is in integral separating structure
of f , then fd is a threshold function with separating structure(

w1, . . . ,wn,

( n∑
i=1

wi

)
− t− 1

)

Furthermore,

(i) If t ≤ 1
2

∑n
i=1 wi − 1, then f is dual-major;

(ii) If t ≥ 1
2

∑n
i=1 wi − 1, then f is dual-minor;

Proof. Let t′ =
∑n
i=1 wi − t− 1. Since the threshold t and weights w1, . . . ,wn are integra, the following

equivalences hold for all X ∈ Bn:

fd(X) = 0 ⇐⇒ f(X) = 1

⇐⇒
n∑
i=1

wi(1− xi) > t

⇐⇒
n∑
i=1

wixi ≤ t′

So fd is threshold with separating structure (w1, . . . ,wn, (
∑n
i=1 wi)− t− 1).

The last two parts follow from the observation that fd ≤ f if t ≤ t′ and f ≤ fd if t′ ≤ t. ■

Example. The function f(x,y,z,w) = xy ∨ xz ∨ xw ∨ yxw admits the separating structure (4,2,2,2,5), so
the dual fd is threshold with separating structure (4,2,2,2,4 + 2 + 2+ 2− 5− 1) = (4,2,2,2,4). Since the
new threshold is smaller, fd is dual-minor.

However, another separating structure for f is (2,1,1,1,2), which yields the dual separating structure
(2,1,1,1,2 + 1 + 1 + 1− 2− 1) = (2,1,1,1,2), so f is in fact self-dual. △

Theorem 7.6. A function f(x1, . . . ,xn) is a threshold function if and only if its self-dual extension
fSD(x1, . . . ,xn+1) = fxn+1 ∨ fdxn+1 is a threshold function.

Proof. Suppose that f is a threshold function with integral separating structure (w1, . . . ,wn,t). Then,
by the previous theorem, (

w1, . . . ,wn,2t+ 1−
n∑
i=1

wi,t

)
is a separating structure for fSD. Conversely, if fSD is a threshold function with separating structure
(w1, . . . ,wn+1,t), then (x1, . . . ,xn,t) is a separating structure for f . ■

7.2 Characterisation of Threshold Functions
The first characterisation is a simple linear programming formulation which provides a useful compu-
tational tool for the recognition of threshold functions. For the sake of simplicity, we only state it
for positive functions: since every threshold function is monotone, this restriction does not entail any
essential loss of generality.

Theorem 7.7. A positive Boolean function f with maximal false point X1,X2, . . . ,Xp and minimal true
points Y 1,Y 2, . . . ,Y m is a threshold function if and only if the system of inequalities

n∑
i=1

wix
j
i ≤ t j = 1, . . . ,p
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n∑
i=1

wiy
j
i ≥ t+ 1 j = 1, . . . ,m

wi ≥ 0 j = 1, . . . ,m

has a solution (w1, . . . ,wn,t). When this is the case, every solution of the system is a separating structure
for f .

Example. Let f(x,y,z) = x ∨ yz.

000 001

011010

100 101

111110

The maximal false points are 010 and 001, and the minimal true points are 100 and 011, so the system
of inequalities is given by

w2 ≤ t (010 false)
w3 ≤ t (001 false)
w1 ≤ t+ 1 (100 true)

w2 + w3 ≥ t+ 1 (011 true)
wi ≥ 0

This system has solution (w1,w2,w3,t) = (2,1,1,1), so f is a threshold function with separating structure
(2,1,1,1). △

Let k ≥ 2 be a natural number. A Boolean function f on B is k-summable if for some r ∈ {2,3, . . . ,k},
there exist r-many not-necessarily distinct false points of f , say X1, . . . , Xr and r-many not-necessarily
distinct true points Y 1,Y 2, . . . ,Y r such that

r∑
i=1

Xi =

r∑
i=1

Y i

A function is k-asummable if it is not k-summable, and is asummable if it is k-asummable for all k ≥ 2.

Example. The function f(x1,x2) = x1x2 ∨ x1x2 has true points 00 and 11, and false points 01 and 10.
Then, f is 2-summable since

00 + 11 = 01 + 10

△

Theorem 7.8. A Boolean function is a threshold function if and only if it is asummable.

Proof. ■

7.3 Threshold Functions and Chow Parameters
Recall that the Chow parameters of a Boolean function f on Bn are the n + 1 integers (ω1, . . . ,ωn,ω)
where ω = ω(f) is the number of true points of f and ωi is the number of true points X∗ = (x∗1, . . . ,x

∗
n)

of f with x∗i = 1.
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Note that

(ω1, . . . ,ωn) =

ω∑
j=1

Y j

where Y 1, . . . ,Y ω are the true points of f .

A Boolean function f is a Chow function if no other function has the same Chow parameters as f .

Example. The function f(x1,x2) = x1x2 ∨ x1x2 is not a Chow function since it has the same Chow
parameters as g(x1,x2) = x1x2 ∨ x1x2, namely (1,1,2). △

Theorem 7.9. Every threshold function is a Chow function.

Proof. Let f be a threshold function on Bn, and let g be a function on Bn with the same Chow parameters.
Let Y 1, . . . ,Y ω be the true points of f , and X1, . . . ,Xk,Y k+1, . . . ,Y ω be the true points of g, where the
Xi are false points of f .

Since f and g have the same Chow parameters,

ω∑
j=1

Y j =

k∑
j=1

Xj +

ω∑
j=k+1

Y j

or equivalently,
k∑
j=1

Y j =

k∑
j=1

Xj

Now, if k ≥ 1, this contradicts the asummability of f . So k = 0, and f and g have the same set of true
points, i.e. f = g. ■

Note that all the points occuring in this final sum are distinct. This motivates the following definition.

A Boolean function f is weakly asummable if for all k ≥ 1, thexe do not exist k-many distinct false points
X1, . . . ,Xk and k-many distinct true points Y 1, . . . ,Y k such that

r∑
i=1

Xi =

r∑
i=1

Y i

Clearly, every asummable (and hence threshold) function is weakly asummable. Moreover, the previous
proof actually establishes that every weakly asummable function is a Chow function. In fact, the converse
implication folds as well.

Theorem 7.10. A Boolean function is weakly asummable if and only if it is a Chow function.

Proof. The forward implication is shown above. For the reverse implication, let X1, . . . , Xq denote the
false points of a function f , and let Y 1, . . . ,Y p denote its true points.

If f is not weakly assumable, then without loss of generality by reordering the points, we have

k∑
i=1

Xi =

k∑
j=1

Y j

for some k ≥ 1. Let g be the Boolean function whose true points are precisely X1, . . . Xk,Y k+1, . . . ,Y p.
Then, f and g have distinct true points and are hence distinct functions, but f and g share the same
Chow parameters, and hence f is not a Chow function. ■
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It is natural to expect some sort of relationship between the Chow parameters of a threshold function
and the separating structure defining the function, since both types of coefficients provide a “measure”
of the “influence” of each variable on the function. This relationship is most natural expressed in terms
of the so-called modified Chow parameters of the function.

The modified Chow parameters of a Boolean function f(x1, . . . ,xn) are the n+ 1 numbers (π1, . . . ,πn,π)
defined as π = ω − 2n−1 and πk = 2ωk − ω, where (ω1, . . . ,ωn,ω) are the Chow parameters of f .

Since there is a bijection between Chow parameters and modified Chow parameters, every threshold
function is uniquely determined by its modified Chow parameters, or by Chow parameters, or by any of
its separating structures.

Theorem 7.11. If f is a Boolean function with modified Chow parameters (π1, . . . ,πn,π), then for all
i ∈ [n],

(i) If f is positive in xi and f depends on xi, then πi > 0;

(ii) If f is negative in xi and f depends on xi, then πi < 0;

(iii) If f does not depend on xi, then πi = 0;

(iv) The modified Chow parameters of fd are (π1, . . . ,πn,− π);

(v) If f is dual-major (fd ≤ f) then π ≥ 0;

(vi) If f is dual-minor (f ≤ fd) then π ≤ 0;

Proof. ■

Theorem 7.12. If f(x1, . . . ,xn) is a threshold Boolea function give by the integral separating structure
(ω1, . . . ,ωn,t), then the number of true points of f can be computed in O(nt) arithmetic operations.

Proof. ■

7.4 Threshold Graphs
In this section, we specialise some of these previous results to the case of graphic (i.e. purely quadratic
and positive) functions. Recall that such a function f(x1, . . . ,xn) =

∨
ij∈E xixj can be identified with

an undirected graph Gf =
(
[n],E

)
. Conversely, if G = (V,E) is an arbitrary undirected graph, we define

its corresponding stability function fG by the expression
∨
ij∈E xixj .

A graph G is a threshold graph if its stability function fG is threshold, and we say that (ω1, . . . ,ωn,t) is
a separating structure of G if it is a separating structure of fG.

Example. The function f(x1,x2,x3,x4) = x1x2 ∨ x1x3 ∨ x1x4 ∨ x2x3 is graphic with associated graph:

1 2

4 3

This function is threshold with separating structure, say (3,2,2,1,3). So Gf is a threshold graph with
separating structure (3,2,2,1,3). △

Is there an easy way to determine which graphic functions are threshold, or equivalently, which graphs
are threshold?

Recall that an independent set in a graph is a set of vertices of which no two are adjacent.
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Theorem 7.13. A graph G = (V,E) is a threshold graph if and only if there exists a structure (ω1, . . . ,ωn,t)
such that for every subset S of vertices, S is an independent set if and only if∑

i∈S
wi ≤ t

We also recall that for a graph G = (V,E) and a vertex i ∈ V , the neighbourhood N(i) of i is the set of
vertices adjacent to i. We say that i is isolated if N(i) = ∅, and that i is dominating if N(i) = V \ {i}.
Note that isolated vertices of G correspond to inessential variables of fG, since they don’t appear in any
term.

Theorem 7.14. A graph G is threshold if and only if it is C4, P4, and 2K2-free.

Proof. ■

Example. The graph above is threshold since it does not contain C4, P4, nor 2K2 as induced subgraphs.
△

Theorem 7.15. A graphic function f(x1, . . . ,xn) is threshold if and only if there is a permutation
σ : [n] → [n] such that for every i ∈ [n], σi is either isolated or dominating in the subgraph of Gf induced
by {i, . . . ,n}.

8 Read-Once Functions

A Boolean function f is read-once if it can be represented by a Boolean expression over {x, ∧ ,∨} such
that every variable appears exactly once. Such an expression is called a read-once expression for f .

Example. The function f0(a,b,c,w,x,y,z) = ay ∨ cxy ∨ bw ∨ bz is a read-once function since it can be
factored into the expression f0 = y(a ∨ cx) ∨ b(w ∨ z), where every variable appears exactly once. △

Note that read-once functions are necessarily monotone since every variable appears either in its positive
or negative form in the read-once expression, an thus cannot contribute in conflicting directions. However,
we will make a stronger assumption that a read-once function is positive, simply by renaming any negative
variables xi as new positive variables x′i.

Consider the two simple functions f1 = ab ∨ bc ∨ cd and f2 = ab ∨ bc ∨ ac. Neither of these functions
are read-once. As we will see, these illustrate the two types of forbidden functions that characterise
read-once functions.

Let f be a positive Boolean function over the variables x1, . . . ,xn. The co-occurence graph G(f) of f is
the undirected graph with vertex set V = {x1, . . . ,xn} and edge set defined by (xi,xj) ∈ E if and only if
xi and xy occur together at least once in some prime implicant of f .

Example. The co-occurence graphs of f1 and f2 are:

a d c

b c a b

△

A Boolean function is normal if every clique of its co-occurence graph is contained in the set of variables
of a prime implicant of f .
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Example. f2 is not normal, since {a,b,c} is a clique, and the prime implicants of are ab, bc, and ac, which
all contain only 2 variables. △

Theorem 8.1. A positive Boolean function f is read-once if and only if it is normal and its co-occurence
graph G(f) is P4-free.

Before proving this theorem, we review a few properties of the dual of a Boolean function and prove an
important result on positive Boolean functions.

8.1 Dual Implicants

Recall that the dual fd of a Boolean function f is the function defined by

fd(X) = f(X)

An expression for fd can be obtained from any expression for f by interchanging the operators ∧ and
∨ as well as the constants 0 and 1. In particular, given a DNF expression for f , this exchange yields a
CNF expression for fd. This shows that the dual of a read-once function is also read-once.

Let P be the set of prime implicants of a Boolean function f over the variables x1, . . . ,xn, and let D
be the collection of prime implicants for the dual function fd. We assume throughout that all of the
variables for f (and hence for fd) are essential.

We use the term “dual (prime) implicant” of f to mean a (prime) implicant of fd. For positive functions,
the prime implicants of f correspond precisely to the set of minimal true points minT (f), and the dual
prime implicants of f correspond precisely to the set of maximal false points maxF (f).

We have also seen that the implicants and dual implicants of a Boolean function f , viewed as sets of
literals, have pairwise non-empty intersections. In particular, this holds for the prime implicants and the
dual prime implicants, and moreover, the prime implicants and the dual prime implicants are minimal
with this property. That is, for every proper subsets S of a dual prime implicant of f , there is a prime
implicant P such that P ∩ S = ∅.

In terms of hypergraph theory, the prime implicants P form a clutter (i.e. a collection of sets, or
hyperedges, such that no set contains another set), as does the collection of dual prime implicants D.

Theorem 8.2. Let f and g be positive Boolean functions over the varibles x1, . . . ,xn, and let P and D
be the collections of prime implicants of f and g, respectively. Then, the following are equivalent:

(i) g = fd;

(ii) For every partition of {x1, . . . ,xn} into two disjoint sets A and A, there is either a member of P
contained in A, or a member of D containied in A, but not both;

(iii) D is precisely the family of minimal transversals of P;

(iv) P is precisely the family of minimal transversals of D;

(v) For all P ∈ P and D ∈ D, we have P ∩D ̸= ∅, and for every set B ⊂ {x1, . . . ,xn} of variables,
there exists D ∈ D such that D ⊆ B if and only if P ∩B ̸= ∅ fot every P ∈ P.

Theorem 8.3. A set of variables B is a dual implicant of the function f if and only if P ∩ B ̸= ∅ for
all prime implicants P of f .

A subset T of the variables is called a dual sub-implicant of f if T is a subset of a dual prime implicant
of f . That is, there exists a prime implicant D of fd such that T ⊆ D. A proper dual sub-implicant is
a non-empty proper subset of a dual prime implicant.

Example. Let f = x1x2 ∨ x2x3x4 ∨ x4x5. Its dual is fd = x1x3x5 ∨ x1x4 ∨ x2x4 ∨ x2x5. The proper dual
sub-implicants of f are the pairs {x1,x3}, {x3,x5}, {x1,x5}, and the singletons of each variable. △
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Note that if T is a proper dual sub-implicant o f , then there exists a prime implicant P ∈ P such that
T ∩ P = ∅.

9 Characterising Read-Once Functions

A positive Boolean expression over the operation of conjunction and disjunction may be represented as
a rooted parse tree whose leaves are labeled by the variables {x1, . . . ,xn}, and whose internal nodes are
labeled by the Boolean operations ∨ and ∧. The parse tree represents the computation of the associated
Boolean function according to the given expression, and each internal node is the root of a subtree
corresponding to a part of the expression. If the expression is read-once, then each variable appears on
exactly one leaf of the tree, and there is a unique path from the root to the variable.

Lemma 9.1. Let T be a parse tree for a read-once expression for a positive Boolean function f over
the variables x1, . . . ,xn. Then (xi,xj) is an edge in the co-occurence graph G(f) if and only if the lowest
common ancestor of xi and xj in the tree T is labeled by a conjunction ∧.

Proof. ■

Theorem 9.2. Let f be a positive Boolean function over the variables x1, . . . ,xn. Then, the following
are equivalent:

(i) f is a read-once function;

(ii) The co-occurence graphs G(f) and G(fd) are complementary, i.e. G(f) = G(fd);

(iii) The co-occurence graphs G(f) and G(fd) have no edges in common, i.e. E
(
G(f)

)
∩E
(
G(fd)

)
= ∅;

(iv) For all p ∈ P and D ∈ D, |P ∩D| = 1;

(v) f is normal and the co-occurence graph G(f) is P4-free.

Proof. ■
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